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ABSTRACT

Weak identification is a well-known issue in the context of linear structural models. However, for
probit models with endogenous explanatory variables, this problem has been little explored. In this
paper, we study by simulation the behavior of the usual  z-test and the LR test in the presence of
weak identification. We find that the usual asymptotic  z-test exhibits large size distortions (over-
rejections under the null hypothesis). The magnitude of the size distortions depends heavily on the
parameter value tested. In contrast, asymptotic LR tests do not over-reject and appear to be robust to
weak identification.
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1. Introduction

Probit  models  are  widely  used  in  applied  econometrics;  for  some  recent  examples,   see
Abramitzky  and  Lavy  (2014),  Beck,  Lin  and  Ma  (2014),  Bijsterbosch  and  Dahlhaus  (2015),
Bouoiyour, Miftah and Mouhoud (2016), Cornelli, Kominek and Ljungqvist (2013), Croushore and
Marsten (2016),  Engelhardt  et  al.  (2010),  Esaka (2010),  Fitzenberger,  Kohn and Wang (2011),
Haider   and  Jahangir  (2017),  Hao  and  Ng  (2011),  Hlaing  and  Pourjalali  (2012),  Horvath  and
Katuscakova (2016), Khanna, Kim and Lu (2015), Litchfield, Reilly and Veneziani (2012), Massa
and Zhang (2013), Wen and Gordon (2014). As in linear models, one or more explanatory variables
can be endogenous. This problem can be solved by using instrumental variables; see Wilde (2008)
for  a  comparison  of  different  estimation  methods  using  instrumental  variables.  The  resulting
estimates can be used to calculate test statistics for the parameters of the model. 

In linear models it is well known that weak instruments may cause considerable size distortions
[see Dufour (2003) for an overview]. Wald-type tests like the usual t-tests and F-tests are especially
vulnerable to this problem [see Dufour (1997)]. In probit models, a single parameter hypothesis is
usually tested by the so-called z-test,  i.e. the ratio of a consistent estimate and its asymptotical
standard  error.  This  is  a  Wald-type  test.  Therefore,  big  size  distortions  can  be  expected.
Nevertheless, the topic seems to be largely a white spot in the literature. Exceptions are the recent
theoretical  papers  of  Andrews  and  Cheng  (2013,  2014),  who  address  the  probit  model  as  an
example. However, Andrews and Cheng (2013) restrict their numerical analysis to a probit model
with a nonlinear regression function and without endogeneity, and Andrews and Cheng (2014) don't
analyze the probit model numerically.4

The paper makes several  contributions  to this  problem. First,  large size distortions  in probit
models  with  endogeneity  are  demonstrated  by  a  simulation  study.  Second,  we  show  that  size
distortions depend heavily on which the parameter  value is  tested:  whereas  size distortions  are
moderate  for  the  problem of  testing  the  null  of  a  zero  parameter,  testing  other  values  of  the
parameter yield large size distortions. Third, the behaviour of the classical likelihood ratio statistic
in that case is analyzed. For the simulation design considered,  no size distortions are observed.
However, the probability of type I error can be notably lower than the nominal level of the test
(undersizing).  Fourth,  some  new  insights  concerning  the  estimation  of  probit  models  with
endogenous covariates are provided.

Section  2  describes  the  econometric  model  and  the  test  statistics.  Section  3  explains  the
simulation  design and the  estimators  used.  Since a  probit  equation  is  part  of  the  model,  some
formulae become more complicated than in the linear case. They are described in detail because
textbook descriptions are missing so far. Section 4 presents the results of the simulation study, and
Section 5 concludes. For ease of exposition, we focus on the binary probit model.

2. Model and classical tests

We study a structural probit model, where one of the explanatory variables is endogenous, and a
reduced-form equation for this variable can be specified. The specific model considered is:

*
1i 1 2i 1 1i 1i

2i 21 1i 22 2i 2i

y y x u

y x x v

    
    

   
*

1i
1i

1, y 0
y

0, else

 
 


,   i = 1, …, N, (2.1)

4

 A further exception is Magnusson (2007), who considered in an early version of his paper the probit model
with endogenous  covariates  as  an  example  and  found medium size  distortions.  However,  in  later  versions  of  the
working paper and in the published version (Magnusson, 2010) the probit example was deleted. 
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where y1i
* is  a  latent  variable,  y1i is  its  observable indicator,  y2i is  an endogenous (observable)

variable,  x1i and  x2i are  (K11)  and (K21)  vectors  of  exogenous  variables,  1,  1,  21,  22 are
unknown parameter vectors of dimensions 1, (1K1), (1K1) and (1K2) respectively, and u1i and v2i

are error terms with mean zero, variances  
1

2
u  and 

2

2
v  respectively, and Cov(u1i, u1j) = Cov(v2i,

v2j) = Cov(u1i, v2j) = 0 for i   j. The probit model assumes that the u1i's are normally distributed.
Whether  the  distribution  of  v2i must  also  be  specified  depends  on the  estimation  method.  If  a
distribution is needed, we assume that u1i and v2i follow a joint normal distribution, i.e.

  1 1 2

1 2 2

2
iid u u v

1i 2i 1i 2i 2
u v v

u , v x , x N 0,
   
  
     

  .

The parameter of special interest is 1. It is not identified if 22 is equal to zero. Therefore, we say 1

that is weakly identified if 22 is close to zero. Sometimes weak identification is quantified by the
so-called  concentration  parameter;  see  Stock,  Wright  and  Yogo (2002,  p.  519).  However,  this
parameter grows with N, and hence it suggests that the problem of weak identification is reduced by
enlarging the sample size. This is misleading, and therefore we don’t use it as guideline in our
study.

Testing the significance of 1 in empirical studies is usually done by the z-statistic (implemented
in almost all econometric software packages): 

 
1

1

ˆ
z

ˆ ˆV





(2.2)

where   1
ˆ ˆV   is  a  consistent  estimate  (assuming  identification)  of  the  asymptotic  variance  of

 1 1ˆN    .  If  1̂  is  consistent  with  an  asymptotic  normal  distribution,  z  is  asymptotically

standard normal distributed under the assumption of strong identification. The parameter 1 can be
estimated by two-step methods [see Blundell and Smith (1993) for an overview] or via joint GMM
or  joint  maximum  likelihood  (ML)  estimation  of  both  equations  [see  Wilde  (2008)  for  a
comparison].

The z-test is a Wald-type test. The classical alternatives to it - the Likelihood Ratio (LR) and the
Lagrange Multiplier (LM) tests - are based on ML estimation of the parameters. In linear models,
the latter are less affected by weak identification than Wald-type tests. Here, we focus on the LR
test. Given the estimates, the LR-statistic is calculated easily, whereas for the LM test an estimation
of the complicated information matrix is needed, and the results may depend on which estimation
procedure was chosen. The loglikelihood function of model (2.1) under the standard assumptions
above is:

   
2

2

2
N

2 2i 2 i
v

i 1 v

y x
ln l 0.5ln 2 0.5



   
         



 
1 2

1 21 1 1i 1 22 2i 2i 2 i
1i v2

v vv

x x y x1
y ln

1

                           
 

   
1 2

1 21 1 1i 1 22 2i 2i 2 i
1i v2

v vv

x x y x1
1 y ln 1

1

                                   
, (2.3)
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where xi = (x1i, x2i), v1i = u1i + 1v2i,  21 1 2 v v( , , , , )       ,  2 = (21, 22),   
1v 1iVar v  , and

v = Corr(v1i, v2i); see Wilde (2008, appendix 2). Since the structural parameters enter the likelihood
only through ratios with a standard deviation and the latter does not appear separately, only these
ratios are identifiable. Therefore, in our simulation study, 

1v is taken as known.
We consider the problem of testing

H0: 1 1     vs.  H1: 1 1   .

We denote by ML̂  the unrestricted ML estimator of  (based on (2.3)) and by RML̂  the restricted

ML estimator under the null hypothesis. The LR statistic takes the form 

    ML RML
ˆ ˆLR 2 ln l ln l    .

Under  the  usual  assumptions  (including  strong  identification)  LR  is  asymptotically  2(1)
distributed.

3. Simulation design

In order to avoid arbitrary choices of unnecessary nuisance parameters, we consider a simple

simulation design with   1K 0, 1  and K2 = 1. K1 = 0 defines a model even without constants,

whereas K1 = 1 is used to add a constant in both equations. With K1 = 0,  ML estimation causes
numerical problems, i.e. many replications ended with the message "maximum iterations reached"
even after  200 and more iterations.  Since  GMM estimation  is  a  well-known alternative  to  ML
estimation also for probit type models and the efficiency loss in models like ours seems to be small
[see Wilde (2008)], we used GMM estimation for the z-test. As will be shown below, the results
under weak identification are nearly the same for models with and without constants. Therefore, we
focus our comparison of z-test and LR test for models including constants in both equations. 

In (2.1), the second equation is a reduced-form equation. Endogeneity of y2 can occur for  at least
two reasons: correlation between the error terms of the structural equations and/ or simultaneity
between y1 and y2.  Both yield a correlation between u1 and v2.  In our simulation,  we focus on
simultaneity because it can be interpreted more easily. Nevertheless, all results can be reproduced
by assuming correlation between the error terms of the structural equations. Therefore, our main
data generating model including constants is:

*
1i 1 2i 11 1i

*
2i 2 1i 21 22 i 2i

y y u

y y x u

    
      

   
*

1i
1i

1, y 0
y

0, elsewhere

 
 


   i = 1, ..., N (3.1)

The residuals u1i and u2i are drawn independently from a N(0, 16) distribution, i.e. the residual
variances  are  equal  for  both  equations.  The  exogenous  variable  xi is  drawn from a  N(0.5, 16)
distribution, so the expected number of ones for y1i differs from the expected number of zeros for
the model without constants. Alternatively,  we draw the residuals independently from a N(0, 1)
distribution and xi from a N(0.5, 1) distribution. The constants are chosen as  11 = 0.5 and  21 =
0.25.  Weak  identification  is  equivalent  to  22 close  to  zero.  In  our  simulation,  we  choose
22 = 0.0001.  Smaller  values  of   22 do  not  sharpen  the  results  any  more.  The  case  of  strong
identification is simulated by 22 = 1. Furthermore, all simulations are also done for 22 = 0.1 to see
whether weak identification causes problems also for moderate parameter values. The simulations
are done for the sample sizes N = 400 (medium sample size) and N = 2000 (large sample), and are
replicated 5000 times. 
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The estimated model is: 
*

1i 1 2i 11 1i

2i 21 22 i 2i

y y u

y x v

    
    

   y1i as defined in (3.1),   i = 1, ..., N, (3.2)

where 
2 11 21

21
1 21

   
 

  
, 

22
22

1 21


 

  
, and 

2 1i 2i
2i

1 2

u u
v

1

 


  
. In (3.2), 1 is exactly identified as long

as 22 is different from zero. 
(3.2) is estimated  by GMM using the “natural” moment conditions [see Wilde (2008)]:

    
 

    
 

1

1

i 1i 1 21 22 i 11 v

i 2i 21 22 i

1i 1 21 22 i 11 v

2i 21 22 i

x y x

x y x
E 0

1 y x

1 y x

         
 
    
  
         
 
     

.

Setting 

1

22

11

21

 
   
 
 

 

,  

    
 

    
 

1

1

i 1i 1 21 22 i 11 v

i 2i 21 22 i
i

1i 1 21 22 i 11 v

2i 21 22 i

x y x

x y x
m

1 y x

1 y x

         
 
    
  
         
 
     

,    
N

i
i 1

1
m m

N 

   ,

we calculated 

    GMM N
ˆ arg min m 'W m


    , WN a weighting matrix,

with regard to . Since the number of moment conditions is equal to the number of parameters the
weighting matrix in the criterion function of the GMM estimator does not matter theoretically and
the same asymptotic covariance matrix of the estimator can be used for all choices of WN [Harris
and Mátyás (1999, p. 22)]. To be more precise, the asymptotic covariance matrix is [see Greene
(2008, p. 445)]: 

  111ˆasyVar G G
N

     ,

 asyVar Nm  ,    
1i 1 21 22 i 11 v: x          , 

1 1 1 1

1 1 1 1

2 2N N N N
21 i 22 i 1 i i 1 i

i i i i
i 1 i 1 i 1 i 1v v v v

N N
2

i i
i 1 i 1

N N N N
21 22 i 1 i 1

i i i i
i 1 i 1 i 1 i 1v v v v

N

i
i 1

x x x x x1 1 1 1

N N N N

1 1
0 x 0 x

N Nm
G

x x1 1 1 1 1

N N N N

1
0 x 0 1

N

   

 

   



     
           


  

                
   


  


   

 

   















 

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Given the assumptions above this matrix can be estimated consistently by

  1
11ˆ ˆ ˆˆest asyVar G G

N


     ,

   
N

i i
i 1

1 ˆ ˆˆ m m
N 

    , Ĝ  G after substituting ̂ for .

The square root of the first diagonal element is the denominator of the z-statistic (2.2). 1ˆ   is  the
optimal weighting matrix and is used to calculate the nominator of (2.2).5 In the model without
constants only the first two moment conditions are used (setting 21 and 11 equal to zero), and G
reduces to a 22 matrix.

Concerning the ML estimation of the model without constants everything works fine for strong
identification, whereas for weak identification the algorithm did not find the maximum for nearly
half of the replications. This is caused by the following: In the model without constants, for instance
the second summand of (2.3) reduces to 

1 2

1 22 i 2i 22 i
1i v2

v vv

x y x1
y ln

1

                     
.

Thus, the parameter 1 is part of the log-likelihood function only in the product 12. However, in
case of weak identification, 2 is close to zero, so that it is very difficult to find the "true" value of
1. The log-likelihood function is rather flat concerning 1. However, including constants avoids the
numerical problems discussed above without changing the results concerning weak identification.
The latter aspect was confirmed for those parameter values for which the optimum was also found
in the model without constants.6 

4. Simulation results

We distinguish two cases. First, we test the null hypothesis  1 = 0, i.e. the significance of y2.
Second, we test the null hypothesis 1 = c, c a constant different from zero, and present the results
for c = 2.  In both cases,  the simulations  are  done for different  values of  2.  Small  values of  2

correspond with a “small” problem of simultaneity. We choose 2 = 0.5 . A “medium” problem of
simultaneity is represented by  2 = 1.5 , and a “large” problem of simultaneity is represented by
2 = 3  and 2 = 6 . 
4.1 Results for the z-test

a) Main model

The results for the models with and without constants are rather similar. Therefore, we focus on
the model with constants. The results for the model without constants can be found in the appendix.
In case of strong identification and testing significance, no size problems can be observed for a
nominal size of 10% and 5% and mostly for a nominal size of 1% (see Table 1). In case of weak
identification the picture is mixed.7 The key result is highlighted in Figure 1 for N = 2000 and a
nominal  size of 5%. If  there is  only “weak“  simultaneity,  an extreme undersizing  is  observed.

5 All simulations were done using R. The GMM estimation was done using the package “GMM”, version 1.6-1. The
case of iid observations can be implemented by the option vcov = "iid"; see Chaussé (2010, p.13). All R codes are
available on request.
6 For the ML estimation the exogenous variable xi was drawn from a N(0, 16) distribution.
7 This result is similar to that of Magnusson (2007).
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However, “strong” simultaneity causes medium size distortions. Nevertheless, the size distortions
are  smaller  than  those  in  linear  simultaneous  equations.  This  is  surprising  because  weak
identification should cause similar problems in probit models. Furthermore, the results for 22 = 0.1
are close to the results for  22 = 0.0001, i.e.  oversizing occurs even for moderate values of the
parameter 22. All results are similar for N = 2000 and N = 400. 

Next we consider the results concerning data simulated with 1 = 2 and testing H0: 1 = 2. Again,
in case of strong identification, no size distortion appears for a nominal size of 10% and 5%; see
Table 2.  However,  in  case  of  weak  identification  and  strong  simultaneity,  the  size  distortions
become very large (2 = 0.5 has to be omitted here because 1 is no longer identified in that case);
see Figure 2. The empirical size becomes more than tenfold as high as the nominal size. Thus, in
probit models similar size distortions as in linear simultaneous equations models can be observed.
In case of strong simultaneity size distortions also occur for  22 = 0.1. They are stronger for N =
400, i.e. sample size matters in that case.

The differences between testing  1 = 0 and  1 = 2 demonstrate  an important  feature: in probit
models, the size distortion depends heavily on the parameter value tested. This property   is not
easily explained by the concentration parameter.  Following the definition of Stock, Wright and
Yogo (2002, p. 519), in our model without constants the concentration parameter 2 is:

 
 2 1

2 2 1

2 2 2 2N N N
u 2 u2 2 2 2 2 2 2 2 2 222

i 22 v i i 22 u 2 u2
i 1 i 1 i 11 2 1 2

x x x
1 1  

                                        
   .

The concentration parameter does not depend on 1. In the model with constants the formula is more
bulky,  but  the  message  remains  unchanged.  Thus,  concerning  the  concentration  parameter  the
problem of weak identification should not depend on the value of 1. 

b) Sensitivity analysis

We do several checks of robustness of our results in Section 4.1a. First, we vary the estimation
method, i.e. we iterate our two-step GMM estimator, and we use I instead of  1ˆ   as weighting
matrix.8 Second, we changed the variances, i.e. we draw the uis from a N(0, 1) distribution and xi

from  a  N(0.5,  1)  distribution.  Third,  we  change  from  exact  identification  of  1 to
underidentification, i.e. 22 = 0, and overidentification, i.e. we add a second exogenous variable in
the second equation. Except overidentification all variations do not change the results. Thus, we
present only examples of the results for these variations. 

Varying the estimation  method does  not  change the results,  i.e.  the shares  of  rejections  are
exactly the same as in tables 1 and 2. This is plausible because in case of exact identification all
unbiased estimation methods should lead to the same results. Varying the variances in the sample
design changes the results slightly, but the tendency remains still  the same: Only moderate size
distortions testing  1 = 0 and large size distortions testing  1 = 2 are observed (see Table 3). The
results in case of underidentification are very close to those of 2 = 0.0001, i.e. underidentification
does not sharpen the results anymore (see Table 4).

In  contrast  with  the  results  above,  overidentification  leads  to  new  insights.  In  the  second
equations  of  (3.1)  and (3.2),  there  is  an  additional  exogenous  variable  drawn from a  N(0, 16)
distribution. The corresponding structural parameter 23 varies in the same manner as the parameter
22,  i.e.  in  case  of  strong  (over-)identification  we  choose  22 =  23 =  1,  in  case  of  weak
(over-)identification 22 = 23 = 0.0001, and 22 = 23 = 0.1 again represents a moderate value of the
parameters. The second exogenous variable is used as an instrument in the same way as x i and the

8 We also tried the option “CUE” for the continuous updating estimator. However, we always got the error message
“node stack overflow”. 
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ones in  the simulations  before.  The matrix  G now becomes a  (65)-matrix,  i.e.  the number of
moment conditions exceeds the number of parameters. Thus, the choice of the weighting matrix
should matter. Therefore, in the following we contrast the results using the identity matrix I with
those based on the “optimal” weighting matrix. We focus on a nominal size of  = 5%. 

First, sample size now also matters. Whereas in case of strong (over-)identification everything
works fine for N = 2000 (see Table 5), N = 400 is too small to meet the nominal size. For testing
1 = 0  the  share  of  rejections  is  in  the  interval  [0.357,  0.3754];  for  testing  1 = 2  the  share  of
rejections is in the interval [0.2846, 0.3942]. This is an interesting side result and a cautious note if
models like ours are used with macroeconomic or experimental data, where even N = 400 is a
challenging sample size. 

Second,  for  testing  1 = 0 with N = 2000 leads  to  stronger  size  distortions  in  case of  weak
identification and large simultaneity. Now, the size distortion is more than fourfold as high as the
nominal size (see Table 5). The results are slightly stronger if I is used as weighting matrix. Again,
in  case  of  weak  identification  and  weak  simultaneity  undersizing  is  observed  although  the
undersizing now becomes smaller. In case of strong simultaneity the results for 22 = 23 = 0.1 are
again close to weak identification, whereas in case of weak simultaneity the results for 22 = 23 =
0.1 are close to strong identification. 

Third,  when  testing  1 = 2  with  N  =  2000,  the  picture  is  mixed.  Using  weighting  matrix  I
strengthens the results in case of strong simultaneity in comparison with the results for model (3.2).
The results are now close to the theoretical expectation that the probability of rejections grows up to
one. However, using the optimal weighting matrix gives lower size distortions than in case of exact
identification.  The interpretation of this result is difficult: for some parameter combinations, the
shares of rejections for 22 = 23 = 0.0001 are even lower than for 22 = 23 = 0.1. This may be due to
the fact that the asymptotic standard errors are a complicated function of 1. If the identity matrix I
is  used as  the  weighting  matrix,  only  GG needs to  be  inverted  for  calculating  the  asymptotic
variance-covariance matrix [see Greene (2008, p. 451)]. In contrast,  using the optimal weighting
matrix requires the inversion of 1G G . In case of weak identification the latter calculation may
lead to “bad” results. However,  further research is needed to clarify the reasons for this result.
Nevertheless, in case of strong and even medium simultaneity always noteworthy size distortions
are observed. 

4.2 Results for the LR test for the main model

We consider again our main model (3.2). We use the same parameter values as in Section  4.1a
and  calculate  the  Maximum  Likelihood  estimator  and  the  LR  statistic.  In  case  of  strong
identification, again no size problems can be observed (see Table 6). However, the results under
weak  identification  differ  substantially  from  those  for  the  z-test.  If  simultaneity  is  weak,  the
observed share  of  rejections  is  near  to  the  true  size,  if  it  is  medium or  strong,  undersizing  is
observed. Thus, the LR test may be a conservative alternative to the z-test.

Testing significance, results for 2 = 6 are missing, because the program stopped with an error
message for some replications. This message was caused by the following:  Consider for instance
1 = 0 and 2 = 6. This implies v = 0.9864, i.e. the bivariate normal distribution of v1 and v2 is near

to  singularity.  Furthermore,  in  (2.3)  2
v1 1 6.08   ,   6 1   ,   1 6 0    ,  and

  ln 1 6    is not defined. Therefore, ML estimation is less robust against a high correlation of
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the reduced-form errors than GMM estimation. This is similar to the findings in Wilde (2008, p.
476) and an interesting side result of our paper.

In contrast with the z-test, the results for the LR test under weak identification do not change if 1

= 2 is tested. Furthermore, in that case 2 = 6 is possible. With 22 = 0.1 and N = 2000, only very
strong simultaneity (2 = ±6) leads to undersizing if N = 2000, i.e. the results are more stable für
moderate values of 22 than those in case of the z-test.

5. Conclusion

The paper analyses weak identification in probit models with endogenous covariates. It shows
remarkable  size distortions  concerning the usual  z-test.  However,  further  research  is  needed to
clarify why the magnitude  depends heavily  on the parameter  value  tested.  The likelihood ratio
statistic  seems  to  be  a  conservative  alternative which  is  robust  to  weak  identification.  Further
research  is  useful  to  clarify  how advanced methods  like  those  of  Andrews and Cheng (2014),
Dufour (2006) or Kleibergen (2005) will work for probit models with endogenous covariates.
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Table 1: Rejection frequencies of the z-test, H0: 1 = 0

22 = 1 22 = 0.1 22 = 0.0001

2

Nominal 
level 10% 5% 1% 10% 5% 1% 10% 5% 1%

6 N = 2000 0.0908 0.0484 0.0178 0.1634 0.1142 0.0512 0.169 0.1114 0.0464
N = 400 0.0984 0.0688 0.032 0.1764 0.1206 0.05 0.17 0.1196 0.0514

3 N = 2000 0.095 0.0502 0.0118 0.131 0.088 0.0414 0.1424 0.0916 0.035
N = 400 0.0868 0.0508 0.0206 0.1528 0.1018 0.0394 0.1452 0.0938 0.0382

1.5 N = 2000 0.0988 0.0506 0.0114 0.0942 0.0626 0.0242 0.0854 0.0508 0.0124
N = 400 0.0964 0.0482 0.0136 0.1044 0.064 0.0196 0.0896 0.0528 0.0144

0.5 N = 2000 0.0984 0.05 0.0102 0.07 0.034 0.0058 0.012 0.003 0
N = 400 0.0996 0.051 0.0116 0.0432 0.0202 0.0012 0.0148 0.0056 0.0006

0.5 N = 2000 0.0986 0.047 0.011 0.0698 0.032 0.008 0.0128 0.0046 0.0004
N = 400 0.0974 0.05 0.0102 0.0382 0.0154 0.0016 0.0126 0.0038 0.0006

1.5 N = 2000 0.097 0.0486 0.01 0.0914 0.0626 0.0254 0.0836 0.0458 0.0136
N = 400 0.0966 0.048 0.0102 0.096 0.0566 0.0178 0.0896 0.048 0.0128

3 N = 2000 0.096 0.0468 0.0108 0.1212 0.0866 0.0388 0.143 0.0922 0.0342
N = 400 0.0864 0.0464 0.016 0.1408 0.0914 0.0332 0.1488 0.0976 0.034

6 N = 2000 0.0886 0.0462 0.016 0.1548 0.1076 0.0484 0.1674 0.1138 0.0458
N = 400 0.093 0.0658 0.0276 0.1696 0.113 0.0454 0.1768 0.1196 0.0482

Figure 1: Rejection frequencies of the z-test under weak identification, 
H0: 1 = 0, nominal size 5%, N = 2000
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Table 2: Rejection frequencies of the z-test, H0: 1 = 2

22 = 1 22 = 0.1 22 = 0.0001

2

Nominal 
level 10% 5% 1% 10% 5% 1% 10% 5% 1%

6 N = 2000 0.089 0.0556 0.0234 0.2724 0.228 0.1696 0.5586 0.5142 0.4366
N=400 0.1038 0.0726 0.0382 0.448 0.4078 0.3322 0.5732 0.526 0.454

3 N=2000 0.0996 0.0518 0.0144 0.1586 0.1244 0.081 0.3686 0.31 0.2076
N=400 0.0842 0.048 0.02 0.2772 0.2314 0.1634 0.3756 0.315 0.218

1.5 N=2000 0.097 0.0498 0.0108 0.1042 0.0756 0.032 0.1562 0.0996 0.0404
N=400 0.0932 0.049 0.0116 0.146 0.1002 0.0434 0.1632 0.104 0.0432

0.5 N=2000 0.099 0.0468 0.0108 0.0684 0.0316 0.0056 0.011 0.0026 0
N=400 0.0928 0.049 0.0086 0.0418 0.015 0.0012 0.0126 0.0032 0.0002

1.5 N=2000 0.0996 0.0494 0.0102 0.0864 0.054 0.0218 0.0694 0.0358 0.0078
N=400 0.0914 0.0424 0.0084 0.0856 0.0522 0.0166 0.07 0.04 0.0084

3 N=2000 0.0946 0.0472 0.0116 0.1576 0.1182 0.0708 0.3184 0.253 0.1554
N=400 0.0774 0.0426 0.0146 0.2496 0.1968 0.1246 0.3246 0.2608 0.162

6 N=2000 0.0872 0.0482 0.0198 0.264 0.226 0.1674 0.5416 0.4966 0.4124
N=400 0.1036 0.0696 0.0334 0.4446 0.4004 0.3256 0.5592 0.5152 0.4304

Figure 2: Rejection frequencies of the z-test under weak identification, 
H0: 1 = 2, nominal size 5%, N=2000
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Table 3: Rejection frequencies of the z-test, sample design with variances = 1

22 = 1 22 = 0.1 22 = 0.0001

1 2

Nominal 
level 10% 5% 1% 10% 5% 1% 10% 5% 1%

0 6 N = 2000 0.0908 0.0474 0.0162 0.1278 0.0834 0.0352 0.1424 0.0898 0.033
N = 400 0.0954 0.0618 0.0252 0.1358 0.0852 0.034 0.148 0.0946 0.0332

2 6 N = 2000 0.0808 0.051 0.0176 0.3126 0.2448 0.1708 0.5718 0.5084 0.4078
N = 400 0.1054 0.0724 0.0352 0.4376 0.3902 0.311 0.5464 0.5034 0.4194

Table 4: Rejection frequencies of the z-test in case of underidentification

22 = 0

2

Nominal
level 10% 5% 1%

6 N = 2000 0.1674 0.1138 0.0458
N = 400 0.177 0.1194 0.0482

6 N = 2000 0.5424 0.4964 0.4116
N = 400 0.5592 0.515 0.430

Table 5: Rejection frequencies of the z-test, nominal level 5%, N = 2000,
with overidentification of 1 in the theoretical model

22 = 23 = 1 22 = 23 = 0.1 22 = 23 = 0.0001

Weighting matrix Weighting matrix Weighting matrix
1 2 I Optimal I Optimal I optimal

0 6 0.0526 0.045 0.2396 0.1724 0.2682 0.2072
0 3 0.0484 0.0464 0.1578 0.11 0.2304 0.1758
0 1.5 0.0466 0.0464 0.0818 0.0686 0.135 0.1174
0 0.5 0.0466 0.0464 0.0456 0.0488 0.0112 0.0122
0 0.5 0.047 0.0456 0.0458 0.0456 0.0124 0.015
0 1.5 0.0474 0.046 0.0826 0.071 0.131 0.1232
0 3 0.0492 0.0464 0.1482 0.1062 0.2252 0.1904
0 6 0.0548 0.0496 0.2256 0.1692 0.2686 0.212

2 6 0.0376 0.0454 0.358 0.1574 0.7844 0.099
2 3 0.0452 0.0486 0.1952 0.113 0.5708 0.1126
2 1.5 0.047 0.0456 0.0888 0.0704 0.2416 0.1156
2 0.5 0.0442 0.0458 0.044 0.0446 0.0108 0.0154
2 1.5 0.0538 0.0548 0.0714 0.0598 0.11 0.1104
2 3 0.046 0.0504 0.2006 0.1106 0.4968 0.2102
2 6 0.047 0.0542 0.3882 0.1606 0.7736 0.1344
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Table 6: Rejection frequencies of the LR test

22 = 1 22 = 0.1 22 = 0.0001

1 2

nominal 
size 10% 5% 1% 10% 5% 1% 10% 5% 1%

0 3 N = 2000 0.101 0.0494 0.01 0.096 0.0464 0.0082 0.0654 0.0283 0.0048
N = 400 0.0992 0.0518 0.0128 0.0798 0.0388 0.009 0.0698 0.0324 0.0066

0 1.5 N = 2000 0.1 0.0492 0.0106 0.0998 0.049 0.0104 0.0828 0.0366 0.0062
N = 400 0.1 0.0514 0.0118 0.0946 0.0476 0.0108 0.0834 0.0408 0.0072

0 0.5 N = 2000 0.0986 0.0488 0.012 0.0986 0.0488 0.012 0.0958 0.0478 0.0108
N = 400 0.0996 0.0522 0.0112 0.0996 0.052 0.011 0.0956 0.051 0.011

0 0.5 N = 2000 0.1 0.0488 0.0112 0.1 0.0488 0.0112 0.0966 0.0484 0.0098
N = 400 0.0996 0.0534 0.0116 0.0992 0.053 0.0114 0.0962 0.0518 0.011

0 1.5 N = 2000 0.0988 0.0538 0.011 0.0986 0.0536 0.0106 0.081 0.041 0.008
N = 400 0.099 0.051 0.0106 0.0948 0.0434 0.0086 0.0806 0.0414 0.007

0 3 N = 2000 0.0998 0.0548 0.0106 0.0956 0.0488 0.0076 0.0664 0.034 0.0054
N = 400 0.0962 0.0496 0.0102 0.0732 0.0324 0.0042 0.0676 0.0298 0.005

2 6 N = 2000 0.1014 0.0536 0.01 0.0648 0.0312 0.0066 0.051 0.024 0.0042
N = 400 0.0956 0.0514 0.0114 0.0482 0.0244 0.0058 0.0456 0.0238 0.0044

2 3 N = 2000 0.0974 0.052 0.0092 0.0942 0.0482 0.0092 0.0554 0.024 0.0046
N = 400 0.099 0.0504 0.0106 0.062 0.03 0.0068 0.0498 0.0248 0.005

2 1.5 N = 2000 0.094 0.0466 0.0096 0.0978 0.0514 0.0114 0.074 0.035 0.0056
N = 400 0.0972 0.0524 0.0078 0.0826 0.0416 0.007 0.0682 0.0328 0.0066

2 0.5 N = 2000 0.0974 0.0478 0.0104 0.0968 0.0478 0.0124 0.0936 0.0472 0.0102
N = 400 0.101 0.0462 0.0078 0.0954 0.0486 0.0086 0.095 0.0456 0.0092

2 1.5 N = 2000 0.099 0.0514 0.01 0.0994 0.0522 0.0096 0.0808 0.0404 0.0084
N = 400 0.0922 0.0496 0.0092 0.0914 0.0474 0.0062 0.0814 0.038 0.0072

2 3 N = 2000 0.0996 0.0492 0.0104 0.0926 0.0454 0.0062 0.0588 0.0284 0.0056
N = 400 0.094 0.0476 0.0074 0.0708 0.0302 0.002 0.0538 0.0258 0.0046

2 6 N = 2000 0.0994 0.0492 0.0106 0.0678 0.0276 0.0046 0.0492 0.0268 0.0062
N = 400 0.0894 0.0462 0.0084 0.0492 0.0218 0.0036 0.0462 0.0238 0.0052
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Appendix

Simulation results for model (3.2) with 11 = 21 = 0

Table A1: Rejection frequencies of the z-test, H0: 1 = 0.

22 = 1 22 = 0.1 22 = 0.0001

2

Nominal 
size 10% 5% 1% 10% 5% 1% 10% 5% 1%

6 N = 2000 0.0888 0.0482 0.0178 0.1586 0.1118 0.0516 0.1724 0.1172 0.0474
N = 400 0.0982 0.0668 0.0308 0.1774 0.1188 0.0544 0.1776 0.1232 0.0498

3 N = 2000 0.0982 0.047 0.012 0.1248 0.0894 0.0408 0.1508 0.0942 0.035
N = 400 0.0866 0.0478 0.019 0.1516 0.1012 0.0396 0.1534 0.101 0.035

1.5 N = 2000 0.0998 0.0484 0.009 0.093 0.0636 0.0242 0.0892 0.049 0.014
N = 400 0.096 0.0468 0.0126 0.1042 0.0608 0.0214 0.094 0.0528 0.0132

0.5 N = 2000 0.1002 0.0502 0.0098 0.0714 0.034 0.0078 0.0128 0.003 0
N = 400 0.0958 0.047 0.011 0.0456 0.0188 0.0018 0.0144 0.005 0.0002

0.5 N = 2000 0.1018 0.051 0.0074 0.0712 0.033 0.0096 0.0116 0.0042 0.0002
N = 400 0.0948 0.0478 0.0096 0.0398 0.0172 0.0026 0.0132 0.0046 0.0004

1.5 N = 2000 0.0992 0.0492 0.0088 0.0956 0.0618 0.0242 0.086 0.0488 0.0132
N = 400 0.0916 0.0482 0.01 0.0972 0.0602 0.0194 0.0904 0.0508 0.0124

3 N = 2000 0.0964 0.0492 0.0094 0.1264 0.0888 0.0392 0.1494 0.0942 0.0342
N = 400 0.0862 0.0464 0.0152 0.1438 0.0956 0.037 0.1556 0.1004 0.036

6 N = 2000 0.0902 0.0482 0.0136 0.1596 0.1108 0.0504 0.1736 0.1192 0.0486
N = 400 0.0944 0.0626 0.028 0.1706 0.1166 0.0486 0.18 0.1236 0.0482
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Table A2: Rejection frequencies of the z-test, H0: 1 = 2.

22 = 1 22 = 0.1 22 = 0.0001

2

Nominal 
size 10% 5% 1% 10% 5% 1% 10% 5% 1%

6 N = 2000 0.0874 0.0542 0.0216 0.2668 0.2282 0.1668 0.5634 0.5166 0.4388
N = 400 0.1036 0.0702 0.0406 0.4466 0.4058 0.3358 0.57 0.5276 0.451

3 N = 2000 0.0968 0.0486 0.0128 0.1588 0.1248 0.0802 0.3724 0.3128 0.2164
N = 400 0.0826 0.052 0.0198 0.2818 0.2362 0.1602 0.3756 0.3162 0.2214

1.5 N = 2000 0.0922 0.0462 0.0104 0.1058 0.0726 0.033 0.1584 0.102 0.0408
N = 400 0.0976 0.05 0.011 0.1422 0.0946 0.0416 0.1628 0.1046 0.0408

0.5 N = 2000 0.0938 0.0464 0.01 0.0676 0.0318 0.0062 0.0124 0.0034 0
N = 400 0.1004 0.0486 0.0078 0.0412 0.0148 0.0016 0.0142 0.0044 0.0002

1.5 N = 2000 0.0994 0.0514 0.0102 0.0904 0.058 0.023 0.0712 0.0368 0.0078
N = 400 0.0956 0.0412 0.0096 0.084 0.051 0.0174 0.0736 0.0406 0.0092

3 N = 2000 0.0986 0.051 0.0106 0.1558 0.1214 0.0758 0.3184 0.2576 0.1604
N = 400 0.083 0.0436 0.0154 0.2488 0.1966 0.1208 0.3266 0.267 0.163

6 N = 2000 0.0922 0.051 0.0188 0.2648 0.2252 0.1654 0.549 0.502 0.421
N = 400 0.1044 0.0702 0.0324 0.4402 0.3968 0.324 0.5604 0.5144 0.4304


