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ABSTRACT

Two linear estimators for stationary invertible vector autoregressive mevegge (VARMA) models in
echelon form — to achieve parameter unicity (identification) — with known &ckar indices are studied.
It is shown that both estimators are consistent and asymptotically normal witigstinovations. The
first estimator is a generalized-least-squares (GLS) version of thetépdesist-squares estimator studied
in Dufour and Jouini (2005). The second is an asymptotically efficigimhator which is computationally
much simpler than the Gaussian maximum-likelihood (ML) estimator which requirbsyhignlinear
optimization, and “efficient linear estimators” proposed earlier (HanndrKawalieris,Adv. App. Proh.
1984, Reinsel, Basu and Yap, Time Series Angl1992, and Poskitt and Salail, Time Series Anal.
1995). It stands for a new relatively simple three-step estimator basedirmeaa regression involving
innovation estimates which take into account the truncation error of the tgpe-$0ng autoregression.
The complex dynamic structure of associated residuals is then exploitedve derefficient covariance
matrix estimator of the VARMA innovations, which is of ord&r! more accurate than the one by the
fourth-stage of Hannan and Kavalieris’ procedure. Finally, finite-darsimulation evidence shows that,
overall, the asymptotically efficient estimator suggested outperforms its commpétiterms of bias and
mean squared errors (MSE) for the models studied.

Keywords: Stationary invertible VARMA; echelon form; Kronecker indices; truncatlag; linear
estimation; simulation.
Journal of Economic Literature Classification: C13, C32.
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1 Introduction

Vector autoregressive (VAR) modeling has received considerabletiatie especially in time series
econometrics; seelltkepohl (2001, 2005), Hamilton (1994) and Dhrymes (1998). Thisulaojby is
due to the fact that such models are easy to estimate and can accourtatigelgecomplex dynamic
phenomena. However, besides it often requires a very large numparaheters to produce a good fit,
the VAR specification is not invariant to many basic linear transformationsnBtance, VAR subvectors
follow VARMA models. Temporal and contemporaneous aggregations leaiktexl VARMA processes
[L Utkepohl (1987)]. Also, trend and seasonal adjustments lead to modeidethe VAR class [Maravall
(1993)]. The VARMA structure includes VAR models as a special casecan reproduce in a more
parsimonious way a broader class of autocovariances and datatgenpracesses, which can improve
estimation and forecasting; seétkepohl (2006) and Athanasopoulos and Vahid (2008).

VARMA maodeling has been proposed long ago [see Hillmer and Tiao (197&),and Box (1981),
Reinsel (1997) and litkepohl (2005)] but has been of little use in practice. Indeed, besidfding
potentially complex restrictions to achieve identifiability, the task is compoundetidoynultivariate
nature of the data. Once an identifiable specification has been formuldfererd estimation methods
are considered. But the most studied is ML with strong Gaussian eremdidannan (1969, Hannan,
Kavalieris and Mackisack (1986), Mauricio (2002, 2006), and Gall@§09), among others. However,
maximizing the exact likelihood in stationary invertible VARMA models is computatioriallglensome.
Tiao and Box (1981) stressed that it is much easier to maximize a conditionkhdie, though
numerical problems still occur with high-dimensional systems in lack of suitaitia walues. Recently,
Metaxoglou and Smith (2007) studied the identification and ML estimation of VARM®#els using EM
algorithm-based state-space methods. Although this can yield improvemenéadier ML approaches,
we note that recovering the echelon VARMA coefficient estimates fromtétte-space formulation may
not necessarily lead to stationary and invertible models. Further, the i@abls estimation of VARMA
models still requires potentially lengthy iterative optimization over a high-dimeakpmarameter space.
Thus, in high-dimensional systems, nonlinear estimation proceduresteampete with linear methods
from the computational cost viewpoint, especially when simulation-baseirde is required.

Recursive linear regression methods, initially proposed by Hannan iasdrien (1982) for ARMA
models, have been extended to the VARMA case; see Hannan and Kiavdlé84), Reinsel, Basu and
Yap (1992) and Poskitt and Salau (1995). It consists in estimating, bysigaares (LS), the innovations
of the VARMA process from a long autoregression to then be used essgags to estimate the VARMA
parameters. Finally, a linear regression on transformed regressotsgimgvnewly filtered residuals is
performed to achieve efficiency. Note that this multistep linear estimation was initiélduced for
model selection and for obtaining consistent estimates which can be used tzeii@nlinear methods,
such as ML. The seminal paper by Hannan and Kavalieris (1984) geoj@four-step linear procedure for
specifying and estimating stationary ARMAX systems. The first three steps fin model specification
and on providing initial estimates, using Toeplitz regressions based on Wmesbr-Whittle algorithm.
However, these estimates are substantially biased especially when the théaaforegression-order to
the sample size is too large [Hannan and Deistler (1988)]. Finally, usingsa&jression, the fourth stage
yields asymptotically efficient estimates. Reinsel et al. (1992) analyzed theskimation of VARMA
models from a GLS viewpoint. Modulo some approximations allowing for the asytagequivalence
between GLS and ML, they derived a linear regression with error tertfeaviog a moving average
(MA) process. However, their analysis underscores the heavy datigmal burden of the method since
it systematically requires the inversion of a high-dimensional weighting mairspiled by Koreisha and
Pukkila (1990), Poskitt and Salau (1995) investigated the relationshipebatihe GLS and Gaussian
estimation of echelon form VARMA models. Although asymptotically equivaleMito their estimates



are substantially biased in finite samples. With a simulation study comparing seliee@dmethods
on the quality of the estimates and the accuracy of implied forecasts and impafsenses, Kascha
(2007) highlighted the overall superiority of the fourth-stage linear estimgtiocedure of Hannan and
Kavalieris (1984), while noting situations where the investigated methodstdmwerform very well.

For making VARMA modeling practical, one needs estimation methods that are sioputek
and easy to implement with standard software. More especially as largdesapgroximation-based
inference in high-dimensional dynamic models is unreliable, and that simuladised procedures, such
as bootstrap techniques, are rather recommended. However, suclisatbompractical if computing
the estimator is difficult or time consuming. In this paper, we study two linear estisnimiostationary
invertible echelon form VARMA models with known Kronecker indices. Weu® on the echelon form
since it often tends to deliver relatively parsimonious parameterizationi{ingdofewer free parameters)
than equivalent identification schemes, such as the final equations feerhiitkepohl (2005). Our setup
easily adapts to cointegrated VARMA and VARMAX framework and altermatilentifying schemes.
The first estimator is a GLS version of the two-step LS estimator studied in DafaliJouini (2005),
using a more general setup. The second is a new relatively simple thpelinstr estimator which is
asymptotically equivalent to ML. Unlike predecessors, it relies on theltyotleat consists on using,
among the regressors, filtered residuals which take into account thatimmerror of the first-stage long
autoregression, based on a newly proposed recursive schemecassigtent initial values. It can also
be interpreted as a one-step estimator by the scoring method, starting fyf@fcansistent two-step
linear estimator. The proposed estimator is computationally much simpler and nactiarthan the
ML estimator and earlier asymptotically efficient “linear” estimators, namely teoggested by Hannan
and Kavalieris (1984), Reinsel et al. (1992), and Poskitt and Sa@85J1As such, both of the estimators
studied provide a handy basis for applying resampling inference metaaggbotstrapping).

We show that both estimators are consistent and asymptotically normal witly sStmoovations.
Besides being computationally simpler, our efficient estimator shows distrilalitiogory with explicit
formulae of its asymptotic covariance matrix which is relatively simple and eastitoade for inference
purpose. Also, exploiting the complex dynamic structure of the third-stagegssion residuals, we derive
an efficient covariance estimator of the VARMA innovations, which is okofid—! more accurate than
the one by the fourth-stage of Hannan and Kavalieris (1984). Finalljefsample simulation evidence
shows that two versions of our fully efficient estimator outperform the muttistear estimators studied.

The paper proceeds as follows. Sectmpresents the echelon form VARMA setup. Sect®n
derives the two-step GLS estimator and gives its properties such asgenge and asymptotic normality.
Section4 provides a heuristic derivation of the three-step GLS estimator then statesvesrgence and
asymptotic efficiency. Sectidhshows a comparative simulation study on the finite-sample performance
of competing procedures. Finally, Secti®reoncludes. Proofs are given in Appendix

2 Framework
Let{y; : t € Z} be ak-dimensional random process with the echelon-form VARMA repretienta
(L) yt = pp + O (L) us, (2.1)

whered (L) = &g — Y7, &L, © (L) = ©g + >-F_; ©,L7, p = max (p1,.. ., px) given a vector of
Kronecker indicesp, .. ., px)’, L denotes the lag operat@, = @, with &, a lower-triangular matrix
whose all diagonal elements are equal to qng,= @ (1) y,, with p1, = E (), and{u; : t € Z} is a
sequence of multivariate innovations. The echelon VARMA operadis) = [¢;,, (L)]; =1, @nd
O (L) = [0 (L)] i are left coprime and satisfy a set of restrictions such that, on any giveh r

I,m=1,..
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of ® (L) and® (L), ¢,,, (L) andb,, (L) have the same degrggwith

Dy ) .

G (L) =1=2 dy L’ if I =m,
i o (2.2)

== X QL HlF#Em,

i=pi—pim+1
Otm (L) = Y8 Oim L7 with ©g = @y, (2.3)
DPim m!n (pl + 17pm) forl Z m, (24)
= min (p;, pm) fori <m,

for im = 1,..., k. Note thatp; = py is the number of free varying coefficients on th¢h

diagonal element of® (L) as well the order of the polynomials on the corresponding row of.),
while p;,,, specifies the number of free coefficients in the operafgr(L) for I # m. Zlepl is the
McMillan degree and” = [pym; ,,—; ., iS the matrix formed by the Kronecker indices. This leads

to SF  S°F _ b autoregressive (AR) ankl>"F_| p; MA free coefficients, respectively. For proofs
on the uniqueness of the echelon form and other identification conditioesslwuld consult Hannan
(196%, 1970, 1976, 1979), Deistler and Hannan (1981), Hannan and Dgi£888), and litkepohl
(2005, Chapter 12).

The process (2.1) is said to be stationary and invertible with respectieeiffimite-order AR and
MA representations:

II(L)y: = pyg + ue and i = p, + V(L) u, (2.5)

whereTl (L) = © (L) ' ® (L) = I;, - %0 | I L7, O (L) = & (L) 'O (L) = I + Y52, ¥, L7,
andyy; = 11 (1) p,, if respectivelydet {® (2)} # 0 anddet {© (z)} # 0 forall |z| < 1 (2 € C), with
det {II (2)} # 0 anddet {¥ (2)} # 0 for all |z| < 1, Further, real constants > 0 andp € (0, 1) exist
such that

M| < Cp™ and ||, ]| < Cp", (2.6)

where||.|| is Schur's normi.e. ||A||* = tr [A’ A] for any matrixA. Also, let3>">° A, ()27 = © (2) .
Then by invertibility || A~ ()| < Cp”, wheren is the vector of all free varying parameters implied by the
echelon form, as shall be specified below.

Now, setv; = y; — u;. Then the latter is uncorrelated with the error tarnsince

p p
. [M@ +> O+ Y @jut_j]. 2.7)
i=1 j=1

Also, let Xy = [1,v}, 9 1, ..., Yiepr U 15+ -+ u;_ﬁ]/ andg = vec|pg, o, P1,..., P501,..., O3,

where®, = I, — ®, be two vectors of respective sizes + 1 andk?h + k, with h = 2p + 1. Then the
echelon restrictions (2.1) - (2.4) imply a uniqik&h + k by r full-rank columns matrixk formed byr

selected distinct vectors from the identity matfjx,, , such that®?’R = I, and = Rn, wherer is an
r-sized vector of free varying parameters witk k?h + k, so that (2.1) takes the form:

yr = [X{ ® Iy] Ry + uy, (2.8)

where [Xt’ ® Ik]R is ak x r matrix. Further, under the assumption that the process is regular [by
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means, with nonsingular covariance matrix of the innovations in the Wold dexsitigm, so that the
process is not linearly predictable and has a nonsingular instantar@@ugace matrix] with continuous
distribution, the echelon form ensures tH%(t[Xt ® Ik] has a nonsingular covariance matrix, so that
rank{ R'['x ® I;| R} = r, wherel'y = E[X,X]].

3 Generalized two-step linear estimation

Let {y_nT_H, cee, yT} be a random sample of sizg- + T whereny is a sequence, function @f, such
thatny — oo asT — oo. Further, consider the infinite-order autoregression (2fintated at the
lag-ordernr, precisely:

nr
Yt = Pi(ny) T Z ry—r + w (n7), (3.1)
T=1
where ;) andu, (n7) stand respectively for a constant term and a compound innovation tfsaich
tritngy = (I = 072, T ) gy, @andug (nr) = 32221 T (7 — 1) 4 us. The following assumptions
on the VARMA innovationsu; and the truncation ordet of the long autoregression are needed to
establish the consistency and asymptotic distribution of the linear estimatorsishadiey.

Assumption 3.1 The vectorsu, t € Z, are independent and identically distributédi.d.) with mean
zero, positive definite (p.d.) covariance maffix = E (u;u;) and continuous distribution.

Assumption 3.2 There is a finite constant., such thatt |u; su; su, sus | < my < oo, for all ¢ and all
1<, 4,7, s<k.

Assumption 3.3 ny is a function ofl" such thatvy — oo andn?./T — 0 asT — oo, and, for some
c¢>0,0<d; <1/2andT sufficiently largepn, > eTor,

Assumption 3.4 np is a function ofI” such thatny — oo and n4T/T — 0 asT — oo, and, for some
¢>0,0 < 6y < 1/4 andT sufficiently largeps > cT°2.

Assumption3.1 entails a strong VARMA process, while Assumpti8r2 ensures that the empirical
autocovariances of the process have finite variances. Assumptiersd3.4show alternative conditions
on the truncation lag of the first-stage long autoregression, which are required to ensavergence
and asymptotic normality of the estimators suggested. These assumptions gtate shauld grow
towards infinity neither too fast nor too slowly. Further, by invertibility], || decays at an exponential
rate [see (2.6)]. Hence, for some> 0, whenevemn; = ¢T* for somec > 0 andd > 0,

T Y | —0 asT — oo. (3.2)

T=np+1
Let IT(n7) = [fingng): I (n7) s, Moy (n1) ] = Wy(up Ty, be the LS estimator of the

coefficient matrixII (ny) = [Mn(nTlew--, IL,.,], where Wy(nT) 71 Zthlyth (n7)" and
Ty =T 'S Ys (1) Yy (ng), With Y (nr) = [L,y)_1, ..., Yi_n,] . Further, let

)

ny
Ut (TLT) =Yt — ﬁH(nT) - ZHT (nT) Yt—r, t=1,...,T, (33)

=1



be the LS residuals of the long autoregression (3.1), anﬁlg(g;) =71 Zle @ (nr) @ (n7)’. Then,
under Assumption3.1to 3.3, and (3.2), Dufour and Jouini (2010) showed t(#t/2 /nr)||d (nr) —u||
is stochastically bounded, uniformlyin= 1, ..., T, that is

@ (n7) — we|| = Op(nr/TY?), uniformlyint =1,...,T. (3.4)

Then

[Zunr) = Zull

i;(lnT) =3, = Op(ng/T'?). (3.5)

nr)

The asymptotic equivalence stated above suggests that we may be able tdeestimgstently
the VARMA parameters in (2.8) by replacing the unobserved innovations; iwith their respective
first-stage estimates. Thus, modulo some manipulations, (2.8) can equivalengyritten as

ye = [X¢ (nr) @ Ix| Ry + e (nr) (3.6)
where X; (n) = [Lﬂt (nT)/,Z/Q_p ce y{t—paﬂtfl (nT)/ R (nT)/]/, o (nr) = y¢ — Uy (n7)
and _

p
et (nr) = g (nr) + Z 0, [Ut—j — Up—j (nT) } (3.7)
=0
Noting that||e; (n7) — @ (n7) || = Op(ng/T'?), in view of (3.7) and (3.4), an explicit two-step
(feasible) GLS estimator of is simply
T ~ ~ ~
n= arg;ninzl e (nr)’ E;(lnT)et (n7) = Qx (nr)yWx(ng) » (3.8)
t—

- ~ ~ —1 - - -
whereQ (,,) = {R’[FX(nT) ® 51 ]R} and Wy ) = TV S0, R [Xi (n7) © 550 Tue,

u(nr) (nT
~ ~ ~ -1
with Ty () = T-V S5, X, (nr) X, (nr)'. In addition, letQ x = {R’ [Tx ® 2;1]}2} . Then under
suitable conditions, AssumptioBslto 3.4, and (3.2), Dufour and Jouini (2010) have shown that

17 —nll = O (T71/2) (3.9)
and
T'2() = n) ~> N[0, Qx]. (3.10)

Further, they suggest@lx(nT) as a consistent estimator Qfy .
Now, eSS, = (T'— p) " 31— & (n7) é (n7)', where

& (nr) =yt — [ Xt (nr) ® I R, t=p+1,...,T. (3.11)

Then, using (2.8), (3.4), (3.9) and (3.11), Dufour and Jouini (28h0wed that

ét (nr) —u|| = Op(ny/T=), uniformlyint=p+1,...,T. (3.12)
b 1/2
Hence i )
[Setmr) = Zulls [E0hy = Zat | = Op(na/TY?). (3.13)




4 Asymptotic efficiency

The two-step linear estimator described above is not efficient. To allowffioreacy, a further linear
regression is needed. As will be shown below, the latter is achieved tyitaxg the nonlinear structure
of the VARMA innovations in the model parameters. Unlike Hannan and Kais(i£984)’'s procedure
which is heavy to implement, even in small systems, and whose fourth-stdigee(&f estimator does
not explicitly show the echelon-form restrictions, we yield a simple and congffiwient estimator with
a simple estimator of its covariance matrix. However, a brief description of mgettors is required.

4.1 Competing procedures

Using our setup, we stress that running OLS on (3.6) corresponds tloittiestage and the second-stage
estimation procedures of Hannan and Kavalieris (1984) and Reinde(E292), respectively. Denote by
7 the resulting estimators and g, ®; and©, be the implied two-step OLS estimates.qf, ®; and®),
respectively. Further, designate bythe implied “implicit” VARMA innovation estimates or residuals
such that

® (L) ye = fig + O (L) s, (4.2)

where® (L) = & — >_7_ &;L7 and® (L) = Y-I_ 6,17, with &y = O,. Solving fori, one gets

0o p
Uy = Z A~ (1) |:(§0yt—’7' - Z iy i — fio | (4.2)
=0 =1

where>">° (A, (7)) L™ = © (L)~'. As suggested in the literature [see Hannan and Kavalieris (1984)
and Reinsel et al. (1992)], these implicit residuals,are approximated (or filtered) with

t+nT —1

p
Z Ar (7) [‘i’oyt—T — Z Diyi—ir — /14)}, t=-nr+1,...,T. (4.3)
= i=1

Hannan-Kavalieris (HK) procedure:
Let Vi (7)) = [Loys — e () s Yh_1s s Yigoet1 (), .., e1—p (7)) ] be the regressor vector based on

the two-step OLS residuals (/) defined above. Also, sét; (7)) = S50 R [Vie, (7) @ A, (7)'].
Then, the efficient estimator of Hannan and Kavalieris (1984 fier

T ~ —1 r ~
ir =i+{ Y Wi@E L W@ Y Y We@ S, e @) (4.4)
t=—nr+1 t=—nr+1
wheren and ie(nT) are the respective OLS estimatorsipnd >, obtained from model (3.6). These

authors have then proposég(n ) =+ T —p) " S0 (0 Ak o (7 i) where
0, (M, ) = & (7)) — Wi (7)) (g — 1), as the fourth-stage estimatorof,.

Reinsel-Basu-Yap (RBY) procedure:
Manipulating (2.1), the GLS estimator of Reinsel et al. (1992) obtains frenirikar regression:

D
ye () = Vi) @ It]Rn + > _ Ojuej+ Dy (n,m),  t=-np+1,....T, (4.5)
7=0



wherey; (1) =y — & (7)) + Zfzo éjgt—j () and Dy (7, n) = ?:0 (éj - @j) [St—j (1) — ut—j]-

Dropping the compound teri, (77, n7) — considered as being negligible — from model (4.5), then setting
N N N 3 A - ~ . P

Y (1) = [Yenrr @) syr )] V) = [Vengar (i) -5 Vi (7) ] and® = 375 [L7 @ 6],

whereL’ stands for &ny + T) x (ng + T) lag matrix which has ones on th# diagonal below the

main diagonal and zeros elsewheld ¢educes to the identity matrix), we get the stacked form model

y (i) = [V (7)) ® Ix] Ry + Ou, (4.6)

whereu = [ul,, ..., 7], with ©u having a covariance matrix estimatst ;) = O[Iy.+7 ®

Sei]©', whereX. ) = (nr+T) 'S, e (i) e (i) and© is ak (np + 1) x k(np +T)
matrix based on the two-step OLS estimates. Therefore, the GLS estimatdnséRa al. (1992) is

inay = {RV () @ REL V@ e LR} RV @ eREke@m. @)

thus requiring the burdensome task, even in small samples, of inverting(the+ 7)) x k (np +T)
high-dimensional matriég(ﬁ). An improved version of this estimator is obtained by deleting theXjpst
components of () andp columns ofV (77) and only retaining thé (np + T — p) x k (np + T — p)
lower right corner block matrix oia(ﬁ), but it still requires the systematic inversion of a large matrix.

Poskitt-Salau (PS) procedure:
The second-stage estimation procedure of Poskitt and Salau (19%i§tsan running LS on a variant of
(3.6), precisely )

by (nr) = [X¢ (np)’ @ Ix] R + ¢4, (4.8)

where¢, = >°7_(©;¢,_;, with & = u; — @ (ny). Further, set (ny) = [01 (nr)',..., 1 (nr)'],
X (nT) = [Xl (nT) IR XT (nT)] andg = [C1/> SRR C/T]/l Whereg = 65 andf = [é.lla SRR éT/]/'
Then, the efficient GLS estimator of Poskitt and Salau (1995) is

fipg = {R’ [X (n7) © I 2, [X (n7) @ Ik]R} R'[X (n) ® It|E,, 10 (n7), (4.9)

where, again, one has to invertid x kT high-dimensional matrs€,,,,y = ©[Ir ® ;)] 6’

(estimating the covariance matrix ¢¥, with © now corresponding to the OLS moving-average parameter
estimates from model (4.8). An improved versiomefs is obtained in a similar way t9 gy

4.2 Our procedure

Having shown how our setup is practical and flexible to adapt to altermatdeedure, we now derive our
efficient linear estimator. In view of (3.7), the two-step feasible GLS (madly two-step OLS) residuals
(3.11) are such that

P
€ (nr) = U (nr) Z O;lt—j — w—; (nr)], (4.10)

where, similarly,a, are the implicit VARMA reS|duals or estimates of matching the two-step GLS
(eventually OLS) estimatof since (4.10) can be expressed as (4.1). Indeed, because théeemsr

e; (n7) in (3.7) are functions of the actual innovationsg it follows that by estimating:, (n7) one
implicitly and simultaneously estimates. More importantly, (4.10) reveals that these implicit estimates
u; are endogenous functions not only of the two-step GLS moving aversffiooent estimateéj and
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the resulting residualg; (nr) as well, but also of the first-stage OLS autoregressive resididisr).
Hence, using the fact th&i (L)™' = > oA () L7, one sees that

iy =y (nr) + > Ar () [6—r (n7) = @7 (n7) . (4.12)

This paper proposes a hew recursive filtering scheme for approxinthgsg implicit residuals with

ug (7) nT-+§:A [6e—r (n7) — W—r (n7)],  t=1,....T, (4.12)

initiating with é; (ny) = @, (nr) [hencew; () = u: (ny)] for 1 < t < p. Precisely, our scheme
describes the pointwise adjustment mechanism through which the approxionditte¢ed) implicit
VARMA residualsu, (77) are recursively computed aroufid(ny).

Corollary 4.1 Let {y, : t € Z} be a k-dimensional stationary invertible stochastic process with the
VARMA representation in the echelon form given(®yl)—(2.4). Let also; be the implicit VARMA
innovation estimates matching the two-step estimatas equivalently defined ift.2) or (4.11) but
respectively approximated witd.3) and (4.12). Then, under Assumptiosl-3.4,

i == ) || = 0y (p*77) and [ —we () || = Op (o' 775 ) (4.13)

Obviously, the recursive schemes (4.3) and (4.12) yield approximatigthsdifferent (pointwise)
convergence speeds towards the implicit VARMA residualsregardless of the persistence degree of
the process and the estimation method (OLS or GLS) used for obtaining thetep®ARMA parameter
estimates. However, while noting that we loegeobservations with our recursive scheme, we stress that
this is compensated with the use of better initial values, namely the first-stagegresive residuals that
we know are consistent; see (3.4). Of course, the recursive scltadroes are asymptotically equivalent
only when the Kronecker indices are all equal, namely when GLS redo¢@ksS.

Similarly, it is worth emphasizing that the VARMA innovatiaef can be expressed from (3.7) as

nT + Z Ar et 7' ) — Ut—r (nT) } ) (4.14)

and then be approximated with
ug (n) nT-+§:A let—r (n7) —W—r (n7)], t=1,...,T. (4.15)
Hence,|[u; — u (n)]| = Oy (p'ng/TY?), in view of (3.4). Also, letS, ;) = T 357w (7) we (7).

Then its rate of convergence 1), follows.

Proposition 4.1 Let {y; : t € Z} be ak-dimensional stationary invertible stochastic process with the
VARMA representation in the echelon form giver(hy)—(2.4). Then, under AssumptioBsl-3.4,

1S — Sl

~;%Y—EJW|:<24T*V%. (4.16)



NOWv IetXt (77’) = [17 (% (77])/ ) y£717 ey yzlf—@ Ut—1 (77)/ gee ey ut—ﬁ (ﬁ),]/ Wlth Ut (77]) = Yt — Uy (77])
Further, setZy (,n) = 342 R [Xe—+ (1) ® A, ()’ ]. Then manipulating (4.15) and (4.12), one gets

ug () — g () = =25 (,m)" (7 —n). (4.17)

The latter expression can further be rearranged to obtain the lineasségn model

wi (1) = Ze () n+ € (7,m) , (4.18)

where

we (@) =w @)+ Z @) 7 and e (7,n) =w () + [Z (7) — Z7 (7, n) ]/(77 - 1), (4.19)

with Z; (7) = Y020 R'[Xe—r () @ A, (7)']. Note that (4.17) is an identity obtained by exploiting
the nonlinear structure of the VARMA innovations in the model parameterst &ees not stand for a
Taylor expansion. More importantly, the complex dynamic structure of tioe ®mmsc, (7, n) driving the
process (4.18) — missed by Hannan and Kavalieris (1984) in their faiagl s is completely specified up
to the unknown parameter vectgrsee (4.19). Hence, once estimated, these errors provide a closed for
solution for computing accurately the approximate implicit VARMA residuals oowation estimates
matching the three-step efficient linear estimator that we shall define beloi éresult has not been
established yet in the literature.

In view of (4.17) and (4.19) [or (4.18) and (4.19)], one sees, by LerrAaf Kreiss and Franke
(1992) and (3.9), thalte; (i1, n) — u; () | = O,(T~1/?), which suggests obtaining a third-stage GLS
(fully efficient) linear estimator of;, say#, such that

i = arg minz et (7, 77)/ S;(lﬁ)ét (,m) = QX(ﬁ)WX () (4.20)

. 5 -1 . .
where QX(?]) = {Til th=1 Zt (7~7) E;(%)Zt (7~7)/ } and WX(ﬁ) =7t Z?:l Zt <7~7) Z;(lﬁ)wt (7~7>
Further, le€x iy =TS0 Z () %, (s (7). Then, in view of, (7) [see (4.19)],

Clearly, our third-stage GLS estimators are different from their competgorse alternative
regressors and weighting matrix are used in their computation. Precisebxmait the explicit form
of the second-stage regression residuals to derive a new reciiitsiveg scheme for approximating the
implicit VARMA residuals matching the two-step estimator [see (4.12)]. Thedldoaleaved approximate
residuals stand for "new regressors” which, unlike predecessees(f#.3)], depend on consistent (better)
initial values, and explicitly take into account the truncation error of the $tiage autoregression along
with some adjustments with respect to the second-stage regression redtihelly, it is noteworthy that
7 is asymptotically equivalent to ML under Gaussian errors sﬁ%ﬂ@\n:ﬁ = —Z; (i) [see (4.17)], and
that it corresponds to an iteration of the scoring algorithm starting fyoim view of (4.21).

Another feature characterizing the computation of our fully efficient estimatompared to those of
Hannan and Kavalieris (1984) and Poskitt and Salau (1995), with thepBzn of Reinsel et al. (1992),
consists in using a weighting matrix exhibiting faster rate of convergenoegheetter sample properties;
see (3.13) and (3.5) versus Propositigns However, we stress that, although Reinsel et al. (1992)
procedure’s relies on a refined weighting matrix, it still uses filtered refsdtom an alternative scheme.
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Now, letQ% ;) = {T*1 Soimn 22 () Sy 28 (7)) } andQx ) = {E[ZtE; 1Zt’]} , with
Zy=Y.2 R [Xi—-®A- (n)']. Also, denote by‘AHf the largest eigenvalue of A, for any matrixA.

Proposition 4.2 Let {y, : t € Z} be ak-dimensional stationary invertible stochastic process with the
VARMA representation in the echelon form giver(by)—(2.4). Then, under Assumptiosl-3.4,

1Q% ) — Qx Iy [|@x ) — Qxiplly = O (T7172). (4.22)

The next theorems establish the convergence and the asymptotic normalityafficient estimator.
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Theorem 4.1 Let {y, : t € Z} be a k-dimensional stationary invertible stochastic process with the
VARMA representation in the echelon form giver(®yl)—(2.4). Then, under Assumptiosl-3.4,

i — nll = Op(T7/2). (4.23)

Theorem 4.2 Let {y; : t € Z} be a k-dimensional stationary invertible stochastic process with the
VARMA representation in the echelon form giver(by)—(2.4). Then, under Assumptiosl-3.4,

T2 =) —% N[0,Qx(n)- (4.24)

T—o00

~ -1
A consistent estimator of its asymptotic covariance matrix is t{1§rjf:1 Z (1) E;(%)Zt (n) }
As mentioned above with respect to (4.19), we suggest better filteringadely) from the third-stage
regression residuals (7, 7), well-behaved VARMA innovation estimates in finite samples, saf)),

such that:
. . . 6 /e Tl e _

wheree; (7,7) = we (i) — Z: ()" and Zp (i, 7)) = 32,2 R [Xer (7) © Ar (7)']. Finally, let

Yumy = (T — P! Z;‘F:I_,H ug (M) ug (7)' be the resulting third-stage efficient estimator of the VARMA
innovation covariance matriX,,. Then its rate of convergence follows.

Proposition 4.3 Let {y; : t € Z} be ak-dimensional stationary invertible stochastic process with the
VARMA representation in the echelon form giver(®yl)—(2.4). Then, under Assumptioisl-3.4,

[Zu@) — Zul| = 0p(T7?). (4.26)

To roughly show to which exterﬁ]Q(MHK) is less accurate thaﬁu(m in estimatingX,, in finite
samples, assume for simplicity that the HK procedure uség) andiu(ﬁ) instead of; (7) andie(nT).
Therefore Wy () = Z: (7)), ngx = 1 and theng, (0, 1) = e (7,7). Hence, in view of (4.25), our
well-behaved error covariance estimator suggested above is of Brdenore accurate than the one by
the fourth-stage of Hannan and Kavalieris (1984) in estimating the VARM#Aviation covariance matrix
Y., since

lo: (0 itmrc) — we|| = [Jue () = we]| + Op(T7Y),  t=p+1,...,T. (4.27)

5 Simulation study

The small-sample performance of our proposed estimators is studied with Marite(MC) simulations.
We only focus on the fully efficient estimates since they stand for the majorilootion of the paper.

10



Specifically, we consider a comparative study involving those suggestddabnan and Kavalieris
(1984) (HK), Reinsel et al. (1992) (RBY) and Poskitt and Salau $192S), respectively. In these
simulations, the improved versions of the last two estimators described abos@iged. In addition, two
versions of our proposed three-step estimator, say TS1 and TS2cwmsiglered. The first one relies
on the two-step GLS estimator given in (3.8), while the second is based ondkstap OLS estimator
studied in Dufour and Jouini (2005). Obviously TS1 and TS2 are iddmntican the Kronecker indices
characterizing the echelon canonical form are all equal. While notingttved step OLS estimation has
been used for obtaining the GLS estimators of Hannan and Kavalieris)(2884Reinsel et al. (1992),
those of Poskitt and Salau (1995) were obtained by implementing their tteeg@®cedure in full. Of
course, all competing (fully efficient) estimators are asymptotically equivadeML estimators since
they roughly correspond to one iteration of the Gauss-Newton algorithrtingtérom a+/7-consistent
estimator. Finally, ML estimation was omitted in the simulations for the following reagars, its finite
sample properties have been extensively studied in the literature andomecerhore or less satisfactory
given the model at hand. Second, besides the fact that state-spagafion based ML estimation of
VARMA models still requires potentially high evaluations of the EM algorithm, mepeeially in big or
persistent systems, it also fails to handle the parsimonious echelon foamexarization since it is not
guaranteed that the resulting estimated echelon VARMA models are statiormhnyvartible. Third, in
big systems, nonlinear estimation procedures cannot compete with linear sméthradhe computational
cost viewpoint, especially for simulation-based inference using bootstetipods or maximized Monte
Carlo (MMC) tests [see Dufour (2006) and Dufour and Jouini (2pOB)nally, as the paper deals with
efficient linear estimation methods for VARMA models, we only studied the firdtegde performance
of the main procedures compared to the ones we suggested.

We simulate two bivariate stationary invertible Gaussian ARMA processes vifith ahd respective
Kronecker indiceg1,2) and(2, 1), using sample sizes 100 and 200. Simulation results on the bias (in
absolute value) and MSE of the estimates for each procedure are givieblies 1-4. These tables
also show the MSE ratios of the alternative fully efficient estimators with ptgpel'S1. These results
are based on 1000 replications using GAUSS random number genéfatavoid numerical problems
due to initialization, extra first 100 pseudo-data were generated therrdsicaTrials associated with
estimates implying noninvertible VARMA processes are thrown then replalcedll simulations, the
rate of replacement did not exceed 5% in the worst case. The two-dtefpergarameter estimates
were obtained from models using, as regressors, autoregressisheals associated with autoregression
truncation set to the integer part bf 7’ then7—1/2, since it has been recommended in the literature to
choose the truncation order between these two values. This strateggdrasdnsidered to draw the
effect of the first-stage autoregression lag-order choice on the fiitgple properties of the echelon
parameter estimates. The error covariance matrix with= .49, 095 = .29 ando1o = 091 = —.14, is
used for both simulated models. The parameter values of the simulated ecA&tdiANmodels as well
as the resulting eigenvalues (describing the persistence degree of th§ aredyiven in the tables. For
a better comparison with HK and RBY procedures, the latter are finally coohpiditer discarding the
first n values of the residuals (77) [namely,e_,,.+1 (),...,€0 (7); See (4.3)] to avoid, though partially,
problems due to initialization since preliminary simulations (that we omitted) showard{iOestimates.

For both models, simulation evidence shows that, unlike TS1, TS2 and RBY dsethibose
respective estimates show small to moderate bias, HK and PS procedldiesstiimates with substantial
bias associated with relatively significant MSE r= 100 [see upper panels of Tables 1 and 3]. These
biases decrease with the sample size [see Tables 1-4]. It is suspettdtk thas associated with PS
procedure is due to the weighting matrix used in the computation of the estimatskitt Bod Salau
(1995) argued that the error term in their linear regression follows a rgeaxrage process of ordgr
namely¢, = Z?:o ©;&;_; with 71 ST &8 = Op(n1/T)%, [see Hannan and Kavalieris (1986) and

11
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Table 1: Echelon VARMA model with Kronecker indices (1,2): a compaeagimulation study on alternative fully efficient GLS estimators

Sample Sizd" = 100

nr Coefficient Value Bias MSE MSE Ratio
TS1 TS2 HK RBY PS TS1 TS2 HK RBY PS TS2 HK RBY PS
4 P .000 .009 .010 .001 .011 .009 200 .200 .257 .204 .190 1.000 1.286 1.020 .952
P 2 .000 .003 .004 .001 .004 .000 145 146 179 151 .123 1.006 1.231 1.039 .845
P11 1.200 .020 .020 .005 .018 .008 .056 .057 .079 .057 .051 1.001 1.390 1.012 .896
b12.1 .240 .000 .000 .003 .001 .009 046 .046 .062 .047 .044 1.001 1.361 1.018 .969
ba21 .400 .005 .000 .015 .000 .135 111 .106 .134 115 .181 956 1.205 1.033 1.622
B21.2 -.900 .005 .008 .013 .006 .089 .078 .074 .094 .077 .121 950 1.212 .987 1.558
$22.2 -.270 .002 .000 .005 .002 .048 .068 .068 .086 .073 .083 1.000 1.270 1.082 1.224
0111 .800 .015 .014 .025 .013 .210 .096 .097 .111 .097 .219 1.004 1.153 1.013 2.274
0211 .500 .007 .004 .025 .002 .081 .090 .089 .102 .095 .115 994 1.136 1.060 1.274
0121 .400 .018 .017 .104 .024 .213 117 .118 185 .126 .239 1.006 1.583 1.081 2.043
0221 .400 .037 .030 .059 .033 .168 135 127 160 .148 .220 941 1.185 1.102 1.630
21,2 .340 .035 .028 .004 .030 .334 165 .154 164 .166 .376 935 .993 1.004 2.274
0222 .850 .073 .067 .204 .078 .406 159 153 .261 .159 .418 960 1.639 .997 2.626
10 P 1 .000 .002 .003 .002 .002 .002 206 .208 .266 .211 .199 1.009 1.291 1.025 .969
Hap 2 .000 .005 .005 .002 .004 .003 169 .168 .210 .169 .155 994 1.240 1.003 .919
P11 1.200 .024 .025 .024 .023 .022 062 .062 .079 .064 .060 1.009 1.284 1.038 .971
P12 .240 .000 .000 .003 .000 .000 .046 .047 .073 .050 .046 1.007 1564 1.068 .988
$22.1 .400 .006 .003 .003 .003 .020 105 .102 .110 .111 .107 968 1.046 1.056 1.018
b212 -.900 .014 .012 .005 .007 .003 .081 .078 .088 .079 .078 960 1.082 .983 .970
P22, -.270 .003 .002 .001 .000 .007 .064 .064 .075 .070 .064 996 1.174 1.090 .990
0111 .800 .012 .009 .024 .000 .053 100 .100 .102 .103 .106 1.006 1.020 1.031 1.062
0211 .500 .000 .001 .005 .006 .009 .090 .090 .096 .095 .094 999 1.066 1.051 1.036
0121 .400 .011 .009 .025 .003 .040 122 124 161 .135 .133 1.019 1.321 1.109 1.092
0221 .400 .028 .028 .032 .026 .056 A26 122 127 132 127 974 1.006 1.047 1.007
0212 .340 .019 .022 .039 .026 .066 160 .156 .161 .172 .189 974 1.004 1.077 1.185
22,2 .850 .050 .051 .076 .033 .090 147 148 154 153 .156 1.005 1.043 1.037 1.054

Note — TS1 and TS2 are the three-step GLS estimators based on the twidkSegstimator and the two-step OLS estimator, respectively. While HK, RRIYPS stand for the
fully efficient GLS estimators suggested by Hannan and Kavalieris j1882insel et al. (1992) and Poskitt and Salau (1995), respectiVblyse estimates are obtained with
1000 replications. The eigenvalues of the model are real .900, ®D®BAO for the autoregressive (AR) operator, and real .824 andgate -.188.790i (.813 in norm) for the
moving-average (MA) operator. Recall that the number of eigengaiueach of the AR and MA operators is equal to the McMillan degree.
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Table 2: Echelon VARMA model with Kronecker indices (1,2): a compaeagimulation study on alternative fully efficient GLS estimators

Sample Sizd" = 200

nr Coefficient Value Bias MSE MSE Ratio
TS1 TS2 HK RBY PS TS1 TS2 HK RBY PS TS2 HK RBY PS
5 Ko 1 .000 .001 .001 .003 .001 .000 A14 114 177 116 .110 1.001 1.547 1.016 .961
P 2 .000 .000 .000 .000 .000 .000 .094 .094 .119 .093 .094 1.003 1.268 .996 1.006
P11 1.200 .012 .012 .004 .010 .011 .038 .038 .046 .038 .037 999 1.208 1.016 .972
b12.1 .240 .001 .001 .013 .000 .002 .030 .030 .046 .032 .030 999 1.488 1.048 991
ba21 .400 .000 .002 .011 .004 .012 .062 .060 .073 .065 .076 968 1.189 1.056 1.232
B21.2 -.900 .005 .006 .003 .001 .003 .044 044 053 .046 .051 982 1.196 1.029 1.157
$22.2 -.270 .000 .001 .003 .001 .015 .040 .039 .045 .041 .046 984 1.148 1.038 1.164
0111 .800 .002 .000 .035 .002 .111 .060 .061 .078 .064 .123 1.018 1.301 1.058 2.038
0211 .500 .000 .000 .005 .005 .028 .058 .058 .064 .062 .065 999 1.085 1.063 1.117
0121 .400 .005 .003 .081 .009 .093 075 .076 .134 .085 .130 1.007 1.781 1.132 1.720
0221 .400 .011 .008 .029 .011 .023 .073 .070 .080 .081 .080 961 1.103 1.095 1.101
21,2 .340 .008 .005 .041 .016 .063 .097 .094 .118 .104 .136 966 1.212 1.068 1.391
0222 .850 .030 .028 .118 .031 .206 .087 .087 .157 .094 .218 993 1.794 1.074 2.490
14 P 1 .000 .004 .004 .004 .003 .004 115 116 170 .120 .112 1.006 1.472 1.037 .969
Hap 2 .000 .005 .005 .005 .004 .004 .093 .094 .115 .097 .090 1.000 1.232 1.036 .968
P11 1.200 .011 .011 .012 .011 .010 .038 .039 .052 .040 .038 1.006 1.351 1.038 .985
P12 .240 .000 .000 .001 .000 .000 .031 .031 .045 .033 .032 1.001 1.433 1.057 1.012
$22.1 .400 .000 .000 .000 .001 .013 .062 .060 .063 .063 .067 975 1.017 1.020 1.081
b212 -.900 .005 .005 .005 .004 .002 .047 .046 .048 .048 .049 985 1.028 1.025 1.035
P22, -.270 .000 .000 .001 .000 .005 .039 .039 .043 .041 .040 985 1.085 1.029 1.014
0111 .800 .001 .004 .000 .011 .019 .063 .064 .064 .067 .061 1.015 1.017 1.062 .972
0211 .500 .001 .001 .002 .002 .005 .060 .059 .064 .062 .063 997 1.077 1.035 1.056
0121 .400 .000 .002 .002 .008 .017 .079 .079 .086 .083 .083 1.004 1.096 1.054 1.058
0221 .400 .010 .008 .010 .006 .020 072 .071 .074 .072 .071 981 1.032 1.003 .991
0212 .340 .009 .008 .010 .005 .030 096 .094 .097 .100 .109 982 1.016 1.042 1.138
22,2 .850 .021 .020 .027 .009 .038 .088 .087 .086 .089 .089 984 981 1.011 1.008

Note — TS1 and TS2 are the three-step GLS estimators based on the twidkSegstimator and the two-step OLS estimator, respectively. While HK, RRIYPS stand for the
fully efficient GLS estimators suggested by Hannan and Kavalieris j1882insel et al. (1992) and Poskitt and Salau (1995), respectiVblyse estimates are obtained with
1000 replications. The eigenvalues of the model are real .900, ®D®BAO for the autoregressive (AR) operator, and real .824 andgate -.188.790i (.813 in norm) for the
moving-average (MA) operator. Recall that the number of eigengaiueach of the AR and MA operators is equal to the McMillan degree.
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Table 3: Echelon VARMA model with Kronecker indices (2,1): a compaeagimulation study on alternative fully efficient GLS estimators

Sample Sizd" = 100

nr Coefficient Value Bias MSE MSE Ratio
TS1 TS2 HK RBY PS TS1 TS2 HK RBY PS TS2 HK RBY PS

4 M 1 .000 .001 .001 .001 .000 .001 158 .159 .237 .166 .164 1.007 1.503 1.053 1.040
Ha 2 .000 .004 .004 .006 .005 .001 188 .189 .199 .190 .180 1.006 1.059 1.015 .958
b21.0 .500 .003 .004 .005 .005 .003 .033 .033 .062 .036 .033 1.020 1.873 1.093 1.004
b111 1.800 .002 .001 .030 .000 .010 .034 .034 .063 .039 .034 1.009 1.817 1.134 1.001
B21.1 -.400 .037 .041 .016 .045 .038 .096 .100 .179 .112 .095 1.033 1.852 1.155 .982
$a2.1 .800 .064 .069 .038 .075 .067 144 149 252 .166 .142 1.029 1.746 1.148 .982
P12 -.360 .005 .007 .157 .011 .053 JA11 112 246 .130 .116 1.007 2.212 1.169 1.042
P19 -.900 .012 .015 .251 .021 .083 169 .169 .382 .196 .176 1.002 2.261 1.163 1.042
0111 .330 .055 .055 .024 .043 .118 130 131 214 .143 .160 1.012 1.651 1.105 1.237
0211 -.180 .016 .016 .085 .000 .087 108 .109 .209 .128 .132 1.008 1.924 1.179 1.213
0121 -.200 .021 .022 .066 .014 .111 141 144 183 .154 .169 1.019 1.297 1.090 1.201
22,1 -.400 .072 .080 .126 .071 .188 176 .184 .336 .202 .233 1.043 1905 1.146 1.320
0112 -.200 .061 .064 .098 .055 .070 138 140 .255 .158 .129 1.014 1.849 1.145 .940
12,2 .920 .024 032 .334 .015 .191 205 .210 473 .243 .253 1.027 2.307 1.185 1.234

10 P 1 .000 .000 .000 .005 .000 .001 173 .173 198 .175 .183 1.002 1.143 1.011 1.060
P 2 .000 .000 .000 .002 .000 .001 208 .208 .217 .209 .208 999 1.042 1.004 1.001
$21.0 .500 .000 .001 .000 .001 .006 .040 .040 .048 .041 .041 1.005 1.190 1.011 1.029
P111 1.800 .001 .002 .000 .005 .005 .038 .040 .046 .044 .039 1.040 1.197 1.139 1.028
$211 -.400 .043 .047 .039 .047 .030 116 118 142 121 112 1.018 1.220 1.040 .966
P21 .800 .081 .086 .076 .085 .069 A72 175 208 .179 .169 1.017 1.208 1.043 .984
b112 -.360 .022 .020 .034 .011 .056 115 119 145 128 127 1.031 1.259 1.112 1.103
q§1272 -.900 .046 .043 .066 .031 .098 A73 176 .218 .187 .195 1.021 1.260 1.082 1.126
0111 .330 .061 .061 .051 .052 .075 139 141 .181 146 .151 1.015 1.302 1.049 1.084
0211 -.180 .013 .013 .003 .007 .000 123 123 162 .133 .123 993 1.313 1.076 .994
0121 -.200 .031 .030 .032 .025 .045 148 152 .168 .157 .158 1.025 1.132 1.062 1.064
6221 -.400 .095 .100 .097 .086 .089 213 219 .258 .224 213 1.024 1.208 1.049 .997
0112 -.200 .062 .063 .040 .068 .034 143 148 .187 .158 .132 1.035 1.311 1.103 .926
0122 .920 .071 .073 .107 .043 .122 226 .239 .265 .248 .237 1.058 1.170 1.095 1.048

Note — TS1 and TS2 are the three-step GLS estimators based on the tvi@kSegstimator and the two-step OLS estimator, respectively. While HK, RBIVPS stand for the
fully efficient GLS estimators suggested by Hannan and Kavalieris j1882Insel et al. (1992) and Poskitt and Salau (1995), respectiVelyse estimates are obtained with
1000 replications. The eigenvalues of the model are real .800 analdedwot .900 for the autoregressive (AR) operator, and re20-afd conjugate -.350584i (.681 in norm)
for the moving-average (MA) operator. Recall that the number ofwiees in each of the AR and MA operators is equal to the McMillan degree.
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Table 4: Echelon VARMA model with Kronecker indices (2,1): a compaeagimulation study on alternative fully efficient GLS estimators

Sample Sizd" = 200

nr Coefficient Value Bias MSE MSE Ratio
TS1 TS2 HK RBY PS TS1 TS2 HK RBY PS TS2 HK RBY PS

5 M 1 .000 .000 .000 .002 .000 .000 .078 .079 .103 .080 .081 1.002 1.306 1.019 1.027
Ha 2 .000 .000 .000 .000 .000 .000 .083 .083 .084 .083 .081 1.003 1.013 999 .978
qﬁgm .500 .001 .001 .002 .001 .001 .019 .019 .023 .020 .020 1.004 1.185 1.031 1.046
b111 1.800 .002 .001 .016 .001 .004 .023 .023 .035 .025 .023 1.003 1.498 1.080 1.008
B21.1 -.400 .016 .017 .012 .017 .016 .059 .060 .067 .062 .062 1.013 1.132 1.055 1.058
$a2.1 .800 .028 .030 .027 .030 .027 .087 .088 .099 .092 .092 1.012 1.132 1.054 1.050
P12 -.360 .000 .000 .076 .001 .025 .073 .073 .136 .081 .075 1.007 1.858 1.112 1.027
P19 -.900 .002 .002 .119 .005 .040 109 109 .208 .121 112 1.007 1.910 1.110 1.026
0111 .330 .025 .026 .032 .019 .051 .080 .081 .097 .089 .090 1.009 1.214 1.103 1.123
0211 -.180 .009 .010 .008 .003 .052 .069 .070 .099 .077 .082 1.011 1.421 1.107 1.190
0121 -.200 .005 .006 .053 .000 .047 .095 .096 .113 .104 .105 1.014 1.194 1.094 1.110
22,1 -.400 .025 .029 .103 .021 .089 107 .109 .162 .119 .136 1.022 1515 1.119 1.277
0112 -.200 .026 .028 .000 .029 .037 .082 .084 .108 .094 .085 1.015 1.308 1.140 1.032
12,2 .920 .004 .006 .192 .000 .105 136 .138 .275 .155 .161 1.013 2.013 1.133 1.179

14 P 1 .000 .003 .002 .003 .002 .003 .082 .082 .082 .081 .084 1.005 1.003 .999 1.028
P 2 .000 .003 .003 .003 .004 .004 .089 .089 .089 .089 .090 1.005 1.001 1.005 1.015
$21.0 .500 .001 .001 .001 .001 .000 .021 .021 .021 .021 .023 1.003 1.005 1.002 1.057
P111 1.800 .000 .001 .001 .001 .005 .024 025 .025 .025 .025 1.017 1.027 1.027 1.038
$211 -.400 .016 .018 .017 .018 .014 .062 .062 .062 .062 .067 1.011 1.004 1.010 1.079
P21 .800 .028 .031 .029 .031 .029 .090 .091 .090 .091 .099 1.011 1.001 1.010 1.100
b112 -.360 .007 .006 .004 .002 .033 .075 .077 .077 .078 .083 1.019 1.027 1.033 1.098
q§1272 -.900 .015 .013 .010 .008 .056 JA12 114 115 116 125 1.018 1.025 1.031 1.113
0111 .330 .022 .021 .021 .020 .028 .081 .082 .082 .082 .085 1.010 1.011 1.015 1.050
0211 -.180 .007 .008 .009 .008 .003 .072 072 .074 .074 .076 .998 1.020 1.017 1.045
0121 -.200 .011 .011 .012 .010 .021 .096 .098 .097 .099 .102 1.021 1.018 1.033 1.066
6221 -.400 .033 .038 .037 .033 .045 JA17 121 119 120 126 1.029 1.016 1.025 1.078
0112 -.200 .026 .027 .028 .031 .012 .083 .084 .085 .088 .080 1.014 1.021 1.056 .966
0122 .920 .020 .021 .020 .006 .063 140 145 144 147 150 1.029 1.028 1.043 1.065

Note — TS1 and TS2 are the three-step GLS estimators based on the tvi@kSegstimator and the two-step OLS estimator, respectively. While HK, RBIVPS stand for the
fully efficient GLS estimators suggested by Hannan and Kavalieris j1882Insel et al. (1992) and Poskitt and Salau (1995), respectiVelyse estimates are obtained with
1000 replications. The eigenvalues of the model are real .800 analdedwot .900 for the autoregressive (AR) operator, and re20-afd conjugate -.350584i (.681 in norm)
for the moving-average (MA) operator. Recall that the number ofwiees in each of the AR and MA operators is equal to the McMillan degree.



Poskitt and Salau (1995)], but instead, they u%ggm which we know isO,, (1) Y. The bias associated
with HK procedure may be attributed to using more or less well behaved filteitduals in finite
samples, and a weighting matrix mismatching the one iteration of the scoring alg¢stdmmg from the
two-step OLS estimates). In fact, they use the third-stage error covaréatienator of their procedure
instead of the one associated with a faster rate of convergence, namelgetmsed on the filtered
residuals necessary to their fourth-stage estimation. Although RBY pioeesses the same filtering
scheme as the HK method, it relatively delivers estimates with satisfactory famitpls properties. This
is due perhaps to using an error covariance estimator with better small-sampézties as a weighting
matrix in their GLS linear regression.

It is well known that approximating VARMA models having highly persistent gerators usually
requires autoregressions with many lags, and vice versa. Also, ap@ting nonpersistent VARMA
models with autoregressions using many lags would result in estimates with higisesind/or MSE.
This exactly occurs with TS1 and TS2 procedures for the echelon VARMAel with Kronecker indices
(2,1) since the dominant eigenvalue associated with the MA operator, namely .68dr(i), is not
considered as persistent; see Tables 3 and 4. The same tables shoivehdhaysample size, increasing
the lag-ordem reduces the large bias for HK and PS procedures, and yields parastiteates with
MSE decreasing for the HK procedure but with a mixed tendency for then@8od. Further, while
noticing that RBY estimates are characterized with a slight increase in thelsgsxhibit MSE with a
mixed tendency. Besides noting that the bias generally decreaseswitith all methods for the echelon
VARMA (1, 2), we stress that the overall tendency for the MSE is not pronounced.isTHue perhaps
to the fact that the largest eigenvalue associated with the MA operatorlyn&®4, cannot characterize
the model as less or highly persistent; see Tables 1 and 2. Simulation resuitshst, overall, TS1,
TS2 and RBY methods outperform those of HK and PS by far. For a bettardad which procedure
provides estimates with better sample properties — since we note that thos# gir&idure behave in
a way quite similar to ours — we compute the ratio of the MSE of each procedstmates relative to
those associated with TS1. Obviously, with the exception of TS2 and P8duras, those of RBY and
(to a large extent) HK provide estimates with MSE ratios, overall, greater thian dlote that the cases
where the MSE ratios of PS estimates are less than unity are somehow (injimétciityited to relatively
substantial biases characterizing some of the echelon parameter estinh&i®s cdses also match some
situations where the reduction in the standard deviation of the estimates owveggimcrease in the
square of the associated bias. Further, the frequency of these brityaratios is generally increasing
with n7 and decreasing with the sample size. Finally, it is noteworthy that, while TS#a@gndominates
RBY , TS1 has a slight advantage over TS2. So, choosing either TS$2wbuld have no significant
effect on the small-sample behavior of the resulting echelon VARMA pararestienates for the models
studied.

6 Conclusion

This paper proposes a new three-step linear estimation procedure tionata invertible echelon
VARMA models. It can be extended to VARMAX or integrated and cointegra@aRMA models as
well. The estimation method focuses on the echelon form parameterizationrassitoedeliver relatively
parsimonious models, but may easily adapt to other parameterizations ghelfiaal equations form.
Our setup provides simplified and practical echelon parameter estimategdhedsier to obtain
than those of Hannan and Kavalieris (1984), Reinsel et al. (199d)Paskitt and Salau (1995). We
extend the results of Dufour and Jouini (2005) to the two-step GLS estirmatbshow its consistency
and asymptotic normality with strong innovations. Exploiting the explicit form of ¢heond-stage
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regression residuals, we propose a new recursive filtering schesad ba consistent (hence better) initial
values for obtaining well-behaved pseudo-regressors necessauy third-stage GLS (fully efficient)
estimation. These filtered residuals which approximate the implicit VARMA innovagistimates
matching the two-step linear estimator, are functions of the first-stage augtssemn residuals and the
second-stage regression residuals as well. So, they take into acoatmirtbation error associated with
the long-autoregression used in the first-stage, along with some adjustmetin the first two-step
regression residuals. Besides this novelty, our third-stage linearseggmeis derived by exploiting the
nonlinear structure of the VARMA innovations in the model parameters withginguraylor expansion.
As such, the resulting three-step GLS estimator, for which we establish iséstemcy and asymptotic
normality with strong innovations, then show its asymptotic equivalence to Mhcghefficiency)
under Gaussian innovations, provides an intuitive interpretation of n@mlestimation methods such as
nonlinear GLS and ML. Although our three-step linear estimation procedasymptotically equivalent
to those by Hannan and Kavalieris (1984), Reinsel et al. (1992) asKitPand Salau (1995), it is
computationally much simpler relatively. In addition, the asymptotic covariartceasrs we gave for
the second and third-stage echelon VARMA parameter estimators as waliimgale and more practical
for inference, especially in the context of simulation-based techniques &s1 bootstrap methods or
MMC tests. Finally, by examining the complex dynamic structure of the third-stgession residuals,
we provide an efficient estimator of the covariance matrix of the VARMA irtions, which is of order
T—! more accurate than the one by the fourth-stage of Hannan and Kaval@8i)(

The small-sample performance of our efficient linear estimators is studiedacethfp competing
ones, namely those of Hannan and Kavalieris (1984), Reinsel et &2),1&nd Poskitt and Salau
(1995). Simulation evidence shows that, in most cases, our fully efficeima&tors outperform their
competitors in terms of bias and MSE for the models studied. It also stresseerthigivity of the
small-sample properties of the echelon VARMA parameter estimates to the trumoatier of the
first-stage autoregression approximating the true innovations. This stsghat further investigation
should be made in this way for developing efficient model selection proesdo estimate accurately the
autoregression truncation-lag in finite samples. Indeed, such a truncagiprseverely affect, through
the echelon VARMA parameter estimates, the finite-sample behavior of th&rrgdugh dynamics or
smooth functions of the VARMA slope parameters and innovation variasaeh,as impulse responses,
error variance decomposition, predictability measures or long-termdstgcusually subject of interest
in most applied work.

A Appendix: Proofs

PROOF OF COROLLARY 4.1 Let® (p) = [—ﬂq,,éo,—él,..., —i),;], ®(p) = [—pg, Po, —P1,..., —P,] and finally
Ye (P) = [1, 0t Yie1s- - y{_ﬁ]'. Then, in view of (4.2), (4.3), (3.9) and using the multivariate versibLemma2.2 of Kreiss
and Franke (1992), we show, foe= —nr + 1, ..., T, that

oo

=@l < 32 {lac |+ A @ =A@ {12 @) ||+ ]2 @) 2 @) | HYir @) = 0 (o).
T=t+np

(A1)
On the other hand, using (4.11), (4.12), (3.9) and Ler@r2a&f Kreiss and Franke (1992), we show, fo= 1, ..., T, that

||’ELt — Ut (’I~7) || S Z:t {HAT (77) H + HAT (’I~7) — AT (77) H}{”éth (nT) - 'U/t—TH + Hutff - ﬂtfﬂ' (nT) ||} = Op (pt%)v
- (A.2)
since||u¢—r — @i—r (nr)|| and||&—, (nr) — ue—-|| are bothO, (nr/T*/?) in view of (3.4) and (3.12), respectivelys
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PROOF OF PROPOSITION 4.1 By the triangular inequality,
. 1 &
S = Sull < 7 D7 {llue @) = el [Jue @) | + [fwe e @) = e} + Op(T72), (A-3)
t=1

WhereHut (n) — utH < H“f (M) —ue () H + H“f (n)— utH with H“t (n) — utH =0, (ptnT/Tlp). Using (4.15) and (4.12),

t—1

e @) — e o) || < 3 {HAT @) [[ée—r (nr) — eeer (n2) | + [ Ar () — Ar (1) |ee—r () — 10— () H}. (A4)

T=0

On substitutinge;— - (nr) andé;— . (nr) with their expressions in (3.6) and (3.11), and using (3.4), (3.6)l@mma2.2 of
Kreiss and Franke (1992), we have:

t—1

S 14 () e () = r ) | < K72 3 A ) Ko or) R =l = 00T 772) . (a8)

7=0

> 1Ar )= ) ller—r ()=t (mr) | < 30D [1Ar )=o) [0 s st (nr) | = 00 (57 )

=0 j=0

(A.6)
Hence,||u: (i7) — ue (n) || = O, (T71/?) and then|u¢ (7) — w|| = Op (T7/?) + Oy (p'nr/TV/?), fort = 1,..., T. Thus,
{‘ S = Sl || Suim — ). (A7)

u -1
PROOF OF PROPOSITION 4.2 Note thatQ ., is p.d. by definition and le@ x () = { Szt 2y } . Then
= x|, < || Q% ~ xtw e — Oxtn = Qx| (A-8)

Where||Q;(}n) - Q}%W)H = H% S 28, 2 — B[22, Z)]|| = O,(TY/?). Further,

= Qx| < Q[ + |2l + [|Qs]l (A-9)

where, specificallyQ, = 77" >0, Z:2," (27 (hn) — 2], Qe = TS0, Ze [, — E;l]Zf (77,m)" and, finally,

Qs=T"'37 [2¢ (,n) — Zt]Eu(mZt (7,m)". Inparticular,||Q: || < T~ S0, ||Z:]|||=
by invertibility of the VARMA processE || Z; H2 = O (1). Further,

U|Z2 @m) = 20|, where,

t—1

HZZ’(ﬁJ?)-ZHSHRH{ Z[(xt_T(ﬁ)—xt_T)@AT(n)']H+ i[xt_T@pAT(n)/} } (A10)
with . , .
E Z [Xt_T®A (n) ] < Z Z tr[Tx (r1 = 72) ] ||Ary ) [[[|Ars ) || = O (6%) (A.11)
and -
3 [ - ) @0 ]| £ X e - il (12

D
with [| Xe—r (7) = Xe—r || = 3 [Jue—jor (@) — wemj—-||*. Hence||Z¢ (,n) — Zi|| = Op(T™"/2) + Oy (p*) and then

iz
|@1]| = O,(T~'/%). Using Propositiont.1, we also show thaQ-|| and||Qs|| are bothO, (T~'/2), since|| Z7 (71, 7) || is
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Oy (1). Hence|| Q%3 — Qx| — Q%  areallo, (T~'/2). Finally,
Hng(ﬁ) - Qx @) = Op(T717?). (A.13)
On the other hand,
|65t - @5, < [E20ll7 { 12 ) = 22 Gom) |12 ) ||+ 1127 o) 12 ) = 22 o I} (A24)

= O, (1). Further, by Lemm&.2 of Kreiss and Franke (1992),

where, by Propositiod.1, ‘ »-l

u ()
|Ze () = 22 (7,m) || < HRIIZ{ | Xemr (7) = Xeeor || + || X TH}HA — A, ()] =0,(T7?).  (A15)
Then, || Z: /) || < ||Z: (7) — Z¢ (2, n) || + || 22 (7,m) || = HenceHQX(n) Q% andHQX(n) Q% are
bothO,, (T~'/2). Therefore,
H@Xw = Q%q||, = 0p(T72). (A.16)

|
PROOF OF THEOREM 4.1 Note that (4.21) can be rewritten &s— 7 = Qx(m)Qx@m) + Q%) (%@ — Y

Wherng{(ﬁ) =7 23:1 Zto (;77 7]) i;(lﬁ)ut (77) andQS((;]) =71 E?:l Zto (7~], 77) 217(1?’)114 (7]) In addition, |etﬁx<n) =

TS Z:%5  ue. Then, by the triangular inequality,

li=nl < llexml,[2xmll + | @k — Qx| || + 1@xwm L || m - 2xw

1HQX<¢7)H + HQ3<<77> (A17)

I%xam = x|

+HQX<¢7> — Qkx@)

where [|Qxll, = Op (1), [[Qxl| = Op(T™?), while || Q%) — Qx| and HQX(m - Q%@
Op(T~Y2). In addition, setS; = T-'S7_, Z:S  ue () — we], S2 = TS, Z [Zu(ln) Z;l]ut (n) and
Ss =T~ 300 [2¢ (7.m) = 2], ue (). Then

are both
1

|95 — Qx| < 1S2]l+ 1 52]] + 115 (A.18)
Using the fact thafu; — u: (n)|| = O, (p'nr/T"/?) and that||vec[B]|| = ||B||, we show that
T oo
1 _
g5 < 1 S0 3 - O 1125 Bl () — w7} e A7) P = 0 (). ()
t=1 =0
Moreover,
HSQH < H ZZt [Z;(ln) X Mw (n) _Ut H ZZt [E;(lm Y }Ut , (A.20)
+ e 2 [Eu(ln) 251] [u¢ (n) — we]|| = Op(nr/T?). Further, using Propositiof.1,
H Zzt[ (i) ~ B } ut —) iy~ {ZHA HH Z“th - }: O0p(T7), (A.21)
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since|| = S, wX{_.|| = O, (T~*/?), by the VARMA structure ofj.. Hence||Sz|| = O, (T~"). Finally,

151 < 926 | + 192 (A22)

whereQy ;) =T~ i (2 (.m) — Zt]i;(lf,) [ue () —ue] @andQZ ;) =T i (2 (.m) — Zt]i;(li;)ut' Also,

[9zm | < ||QZ<n>H +H|Zoll + 122w, with (A.23)
Q) = TZZR (X7 @ Ar () ]S [ue () —ue] (A.24)
t=1 7=t
1 T t—1 ~
Wy = 702 B [{Xeer () = Xeer} @ A () [ 2005 e () — we], (A.25)
t=1 =0
1 T t—1 _
Wy = 7200 B [{Xemr () = Xeer () } © A () | E05 [ () — ] (A.26)
t=1 7=0
whereX; () = [L,ve (1), yi—1,-- s Yiprue—1 () ..., ue—p (n)"]" @andve (1) = ye — ue (n). Similarly, we have
1 L& n
i T
1926 < HRH‘ u(n)H{T ; ; (| A~ () HH [ue (1) — ue] X7, } = op(m), (A.27)

sinceE(% S A () || H [we () — we] Xi—r ) = O(nr/T%?). Further,

125 < 12|

1 Z t—1 1/2

) {fZHUt(U)—UtH(ZIIAT(n) H2> (Z”Xt - () = Xie T||> } (A.28)
t=1 =0

WhereHXt_T (n) — Xt_TH2 = Zf:o HUt_j_q— (n) — Ut_j_q—HQ, with EHut —ier (M) — u—j TH = O t_j_TnT/Tl/z)

Hence|| X:—r (1)~ Xi—||* = Op (p* " 03 /T) and thery '} || Xe—r (1)~ Xi—r || = Op (nd/T) . Therefore” Yl

is Op (n7/T?) . On the other hand,

T t—1
1 -
t=1 7=0
with || X:—- (7 Xt ol =20 o Jw—jr () — wt—j—r HQ Therefore, we geMQIZ?’(n)H = Op(nr/T?), since
H’LLt (m) —utH = Op(p* nT/Tl/2 andHut (7) —ue () H = 1/2 HenceHQ (n)“ = (nT/TB/Z). Further,
19Zm | < HQZ<n>H+H zZall +19Zm ], with (A.30)
Wy = TZZR/[XFT(@AT () 150y ues (A31)
t=1 7=t
T t—1 .
0Zo = 2SR )Xo} @A ) | S, (A.32)
t=17=0
T t—1 R
G = TZZR (Xt () = Xemr () } @ A (1) | Sy e (A33)
Similarly,
T oo
~ 1 _
I9toll < RS2 [{ 7 32 3 18- 0 llwXi—r [} = 0n(r ), (39
t=1 7=t




sinceE(% S A () HHutX,{,TH) = O(T™"). Hence|| Q%5 || = O, (T"). Further,
| T=1ToT
— I —
195 I < IR]||E2) {f >0 D0 1A ) [fuesr [Xe () = Xi] H} = IRI|[=uin || = 0s (F37).  A39)
7=0 t=1
/
sinceE[A] < £ X7 ST (1A () [ {Ellues- |2} (B () - X2} = O(nr/7972). Further,
ozl < Il |{ S 1 o] 3 wbseer - o1} (A3
/ 2 / 2
where|| 7 320y ue[Xeer (1) = Xeer () || = X200 || imrys we[ue—jr () = we—j—r () || , with
1 T
H* Z Ut [utf‘r (7) — ue—r (77)]/H <AL+ Ao, (A.37)
t=7+1
where
1 T t—7—1 T—7—-1
A = Tl;—l ;) ut[et_f_” (n7) = Gt (nT)]/[A” () — A l Z AHHA () — H’
1 T t—7-—1 T—7—1
AQ = ? Z Ut [ét T— V(nT) — Ct—7—v (nT)]/A Z A22HAV (ﬁ) ”’ (A38)
t=7+1 v=0 v=0
TR (S XT: [etmrs (n7) — s (n) )| = Op (') (A.39)
11 — T t—T—v T t—T—v T — Up T ; .
t=7+4+v+1
R .
B = |7 3wl RS ) e 1| =00 (a0

Therefore, using Lemma.2 of Kreiss and Franke (1992}\; = Op(nT/T3/2) and Ay = O,(T71).

It follows that,

F >t Ui [t (7)) = wi—r (1) ]/H S ue [ X s (7) = Xeor ()] @nd||Q3%;, || are all O, (T7"). Hence
25| and]|s|| are bothO, (7). Thus, [0z, — Qx| = O (1) Likewise,
Hme - Oxm| < HRH{H%{WH + 9% | + 9%l + ||Q§c<ﬁ>\|}v with (A41)
r T t—1
Qﬁ((;]) = R/VGC T Z Z )]li;(lm [ut (’F]) - ut] I:thf (ﬁ) - thq—]/} s (A42)
t=1717=0
1 T t—1 .
By = Rvee|m D > [Ar () = Ar (1) ] 'S [ue (1) - ut]XH'} : (A.43)
- t=17=0
1 T t—1
Q§<(7"I) = R'vec T Z Z [A,— (1) — Ar () ]/Z;(ln)ut [thr (M) — X¢ 7—] } , (A.44)
t=17=0
1 T t—1
QLé((fl) = R'vec T Z [AT (77) — A (77) ]/E;(ln)utxt—‘r ] (A.45)
t=17=0
Using the same arguments as before, we see|ft .\ | = O,(T7*/2), while | %% || [|2% || and || ;|| are all

O, (T~

). Thus, [ @) — 0| =

O, (T~") . Similarly, we show thaHQX(m QX(”)H = O, (T™"). Further, using the
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fact that

.

< %

+ HQX(m - )

< HQX(’U)

+ Hng(m = Qx| + HQX<m - Q%)

, (A.46)

we conclude thaH Qx@)

=0, (T7'?). Finally, || — n|| = O (T7"/?). m
PROOF OF THEOREM 4.2 Let the random vector§x ;) = Tl/Q{QX(;,)QXW + Q% [ — Q}@)]} and
Sx(m = T"*Qxn)Qx(n)- Then,

< T1/2{

Qx ) — @xm)

%o+ llQxem [, [ — 2

stm — Sxm) 1‘

+HQX<77> - Qk@)

[2xam|| + | @

| Ioxa - } (A47)
Using Propositio.2and Theorem.1, we show thaH§X<;7) —Sx(n) ‘ = O, (T~'/?). Therefore, by the central limit theorem
for stationary processes [see Anderson (1971, Section 7.7),(36@8, Theorem 2) and Chung (2001, Theorem 9.1.5)] and the

assumption of independence betwegrand Z;, we havel"/>Qx ., T%;C N[O, Q;(tn)] Hence,

(=) = Sxny =2 N[0, Qxi] (A.48)

]
PROOF OF PROPOSITION 4.3 Note that (4.25) reduces to

Ut (’;]) = Ut (’F]) + Zto (ﬁv ’;])/ (’77 - ﬁ)7 (A49)

sincee; (7,7) = we (7) — Z: (7)' # andw; (7) = ut (7) + Z: (7)' 7. Therefore, using Lemm 2 of Kreiss and Franke (1992),
Propositior4.1, (3.9) and Theorem.1, we get:

o () = | = [l ) = e + (122 ) {2 =l + 17 =} = Op (T772) 4 Ou (6 57) - (A50)

fort =p+1,...,T. Then as in Propositiod.1, we show thaf|S, ;) — Su|| = O, (T7/?). m
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