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ABSTRACT

Two linear estimators for stationary invertible vector autoregressive movingaverage (VARMA) models in
echelon form – to achieve parameter unicity (identification) – with known Kronecker indices are studied.
It is shown that both estimators are consistent and asymptotically normal with strong innovations. The
first estimator is a generalized-least-squares (GLS) version of the two-step least-squares estimator studied
in Dufour and Jouini (2005). The second is an asymptotically efficient estimator which is computationally
much simpler than the Gaussian maximum-likelihood (ML) estimator which requires highly nonlinear
optimization, and “efficient linear estimators” proposed earlier (Hannan and Kavalieris,Adv. App. Prob.,
1984, Reinsel, Basu and Yap,J. Time Series Anal., 1992, and Poskitt and Salau,J. Time Series Anal.,
1995). It stands for a new relatively simple three-step estimator based on alinear regression involving
innovation estimates which take into account the truncation error of the first-stage long autoregression.
The complex dynamic structure of associated residuals is then exploited to derive an efficient covariance
matrix estimator of the VARMA innovations, which is of orderT−1 more accurate than the one by the
fourth-stage of Hannan and Kavalieris’ procedure. Finally, finite-sample simulation evidence shows that,
overall, the asymptotically efficient estimator suggested outperforms its competitors in terms of bias and
mean squared errors (MSE) for the models studied.

Keywords: Stationary invertible VARMA; echelon form; Kronecker indices; truncationlag; linear
estimation; simulation.
Journal of Economic Literature Classification: C13, C32.
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1 Introduction

Vector autoregressive (VAR) modeling has received considerable attention, especially in time series
econometrics; see Lütkepohl (2001, 2005), Hamilton (1994) and Dhrymes (1998). This popularity is
due to the fact that such models are easy to estimate and can account for relatively complex dynamic
phenomena. However, besides it often requires a very large number ofparameters to produce a good fit,
the VAR specification is not invariant to many basic linear transformations. For instance, VAR subvectors
follow VARMA models. Temporal and contemporaneous aggregations lead tomixed VARMA processes
[Lütkepohl (1987)]. Also, trend and seasonal adjustments lead to models outside the VAR class [Maravall
(1993)]. The VARMA structure includes VAR models as a special case and can reproduce in a more
parsimonious way a broader class of autocovariances and data generating processes, which can improve
estimation and forecasting; see Lütkepohl (2006) and Athanasopoulos and Vahid (2008).

VARMA modeling has been proposed long ago [see Hillmer and Tiao (1979),Tiao and Box (1981),
Reinsel (1997) and L̈utkepohl (2005)] but has been of little use in practice. Indeed, besidesfulfilling
potentially complex restrictions to achieve identifiability, the task is compounded bythe multivariate
nature of the data. Once an identifiable specification has been formulated, different estimation methods
are considered. But the most studied is ML with strong Gaussian errors; see Hannan (1969a), Hannan,
Kavalieris and Mackisack (1986), Mauricio (2002, 2006), and Gallego(2009), among others. However,
maximizing the exact likelihood in stationary invertible VARMA models is computationallyburdensome.
Tiao and Box (1981) stressed that it is much easier to maximize a conditional likelihood, though
numerical problems still occur with high-dimensional systems in lack of suitable initial values. Recently,
Metaxoglou and Smith (2007) studied the identification and ML estimation of VARMAmodels using EM
algorithm-based state-space methods. Although this can yield improvements over earlier ML approaches,
we note that recovering the echelon VARMA coefficient estimates from the state-space formulation may
not necessarily lead to stationary and invertible models. Further, the Gaussian ML estimation of VARMA
models still requires potentially lengthy iterative optimization over a high-dimensional parameter space.
Thus, in high-dimensional systems, nonlinear estimation procedures cannot compete with linear methods
from the computational cost viewpoint, especially when simulation-based inference is required.

Recursive linear regression methods, initially proposed by Hannan and Rissanen (1982) for ARMA
models, have been extended to the VARMA case; see Hannan and Kavalieris (1984), Reinsel, Basu and
Yap (1992) and Poskitt and Salau (1995). It consists in estimating, by least squares (LS), the innovations
of the VARMA process from a long autoregression to then be used as regressors to estimate the VARMA
parameters. Finally, a linear regression on transformed regressors involving newly filtered residuals is
performed to achieve efficiency. Note that this multistep linear estimation was initiallyintroduced for
model selection and for obtaining consistent estimates which can be used to initialize nonlinear methods,
such as ML. The seminal paper by Hannan and Kavalieris (1984) proposed a four-step linear procedure for
specifying and estimating stationary ARMAX systems. The first three steps focus on model specification
and on providing initial estimates, using Toeplitz regressions based on the Levinson-Whittle algorithm.
However, these estimates are substantially biased especially when the ratio ofthe autoregression-order to
the sample size is too large [Hannan and Deistler (1988)]. Finally, using a GLS regression, the fourth stage
yields asymptotically efficient estimates. Reinsel et al. (1992) analyzed the ML estimation of VARMA
models from a GLS viewpoint. Modulo some approximations allowing for the asymptotic equivalence
between GLS and ML, they derived a linear regression with error terms following a moving average
(MA) process. However, their analysis underscores the heavy computational burden of the method since
it systematically requires the inversion of a high-dimensional weighting matrix. Inspired by Koreisha and
Pukkila (1990), Poskitt and Salau (1995) investigated the relationship between the GLS and Gaussian
estimation of echelon form VARMA models. Although asymptotically equivalent toML, their estimates
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are substantially biased in finite samples. With a simulation study comparing selectedlinear methods
on the quality of the estimates and the accuracy of implied forecasts and impulse responses, Kascha
(2007) highlighted the overall superiority of the fourth-stage linear estimation procedure of Hannan and
Kavalieris (1984), while noting situations where the investigated methods do not perform very well.

For making VARMA modeling practical, one needs estimation methods that are simple,quick
and easy to implement with standard software. More especially as large-sample-approximation-based
inference in high-dimensional dynamic models is unreliable, and that simulation-based procedures, such
as bootstrap techniques, are rather recommended. However, such methods are impractical if computing
the estimator is difficult or time consuming. In this paper, we study two linear estimators for stationary
invertible echelon form VARMA models with known Kronecker indices. We focus on the echelon form
since it often tends to deliver relatively parsimonious parameterization (involving fewer free parameters)
than equivalent identification schemes, such as the final equations form; see L̈utkepohl (2005). Our setup
easily adapts to cointegrated VARMA and VARMAX framework and alternative identifying schemes.
The first estimator is a GLS version of the two-step LS estimator studied in Dufour and Jouini (2005),
using a more general setup. The second is a new relatively simple three-step linear estimator which is
asymptotically equivalent to ML. Unlike predecessors, it relies on the novelty that consists on using,
among the regressors, filtered residuals which take into account the truncation error of the first-stage long
autoregression, based on a newly proposed recursive scheme usingconsistent initial values. It can also
be interpreted as a one-step estimator by the scoring method, starting from a

√
T -consistent two-step

linear estimator. The proposed estimator is computationally much simpler and more practical than the
ML estimator and earlier asymptotically efficient “linear” estimators, namely thosesuggested by Hannan
and Kavalieris (1984), Reinsel et al. (1992), and Poskitt and Salau (1995). As such, both of the estimators
studied provide a handy basis for applying resampling inference methods (e.g., bootstrapping).

We show that both estimators are consistent and asymptotically normal with strong innovations.
Besides being computationally simpler, our efficient estimator shows distributional theory with explicit
formulae of its asymptotic covariance matrix which is relatively simple and easy to estimate for inference
purpose. Also, exploiting the complex dynamic structure of the third-stage regression residuals, we derive
an efficient covariance estimator of the VARMA innovations, which is of order T−1 more accurate than
the one by the fourth-stage of Hannan and Kavalieris (1984). Finally, finite-sample simulation evidence
shows that two versions of our fully efficient estimator outperform the multistep linear estimators studied.

The paper proceeds as follows. Section2 presents the echelon form VARMA setup. Section3
derives the two-step GLS estimator and gives its properties such as convergence and asymptotic normality.
Section4 provides a heuristic derivation of the three-step GLS estimator then states its convergence and
asymptotic efficiency. Section5 shows a comparative simulation study on the finite-sample performance
of competing procedures. Finally, Section6 concludes. Proofs are given in AppendixA.

2 Framework

Let {yt : t ∈ Z} be ak-dimensional random process with the echelon-form VARMA representation

Φ(L) yt = µΦ + Θ (L)ut, (2.1)

whereΦ(L) = Φ0 −
∑p̄

i=1 ΦiL
i, Θ (L) = Θ0 +

∑p̄
j=1 ΘjL

j , p̄ = max (p1, . . . , pk) given a vector of

Kronecker indices(p1, . . . , pk)
′, L denotes the lag operator,Θ0 = Φ0, with Φ0 a lower-triangular matrix

whose all diagonal elements are equal to one,µΦ = Φ(1) µy, with µy = E (yt), and{ut : t ∈ Z} is a
sequence of multivariate innovations. The echelon VARMA operatorsΦ(L) = [φlm (L)]l,m=1,...,k and
Θ (L) = [θlm (L)]l,m=1,...,k are left coprime and satisfy a set of restrictions such that, on any given row l
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of Φ(L) andΘ (L), φlm (L) andθlm (L) have the same degreepl with

φlm (L) = 1 −
pl
∑

i=1
φll,iL

i if l = m,

= −
pl
∑

i=pl−plm+1
φlm,iL

i if l 6= m,
(2.2)

θlm (L) =
∑pl

j=0 θlm,jL
j with Θ0 = Φ0, (2.3)

plm = min(pl + 1, pm) for l ≥ m,
= min(pl, pm) for l < m,

(2.4)

for l, m = 1, . . . , k. Note thatpl = pll is the number of free varying coefficients on thel-th
diagonal element ofΦ(L) as well the order of the polynomials on the corresponding row ofΘ (L),
while plm specifies the number of free coefficients in the operatorφlm (L) for l 6= m.

∑k
l=1 pl is the

McMillan degree andP = [plm]l,m=1,...,k is the matrix formed by the Kronecker indices. This leads

to
∑k

l=1

∑k
m=1 plm autoregressive (AR) andk

∑k
l=1 pl MA free coefficients, respectively. For proofs

on the uniqueness of the echelon form and other identification conditions, one should consult Hannan
(1969b, 1970, 1976, 1979), Deistler and Hannan (1981), Hannan and Deistler (1988), and L̈utkepohl
(2005, Chapter 12).

The process (2.1) is said to be stationary and invertible with respective pure infinite-order AR and
MA representations:

Π (L) yt = µΠ + ut and yt = µy + Ψ (L)ut, (2.5)

whereΠ (L) = Θ (L)−1 Φ(L) = Ik − ∑∞
τ=1 ΠτL

τ , Ψ (L) = Φ (L)−1 Θ (L) = Ik +
∑∞

v=1 ΨvL
v,

andµΠ = Π (1) µy, if respectivelydet {Φ(z)} 6= 0 anddet {Θ (z)} 6= 0 for all |z| ≤ 1 (z ∈ C), with
det {Π (z)} 6= 0 anddet {Ψ (z)} 6= 0 for all |z| ≤ 1, Further, real constantsC > 0 andρ ∈ (0, 1) exist
such that

‖Πτ‖ ≤ Cρτ and ‖Ψv‖ ≤ Cρv, (2.6)

where‖.‖ is Schur’s norm,i.e. ‖A‖2 = tr [A′A] for any matrixA. Also, let
∑∞

τ=0 Λτ (η) zτ = Θ (z)−1.
Then by invertibility‖Λτ (η)‖ ≤ Cρτ , whereη is the vector of all free varying parameters implied by the
echelon form, as shall be specified below.

Now, setvt = yt − ut. Then the latter is uncorrelated with the error termut since

vt = Φ−1
0

[

µΦ +

p̄
∑

i=1

Φiyt−i +

p̄
∑

j=1

Θjut−j

]

. (2.7)

Also, letXt =
[

1, v′t, y
′
t−1, . . . , y′t−p̄, u

′
t−1, . . . , u′

t−p̄

]′
andβ = vec

[

µΦ, Φ̄0, Φ1, . . . , Φp̄, Θ1, . . . , Θp̄

]

,
whereΦ̄0 = Ik − Φ0, be two vectors of respective sizeskh + 1 andk2h + k, with h = 2p̄ + 1. Then the
echelon restrictions (2.1) - (2.4) imply a uniquek2h + k by r full-rank columns matrixR formed byr
selected distinct vectors from the identity matrixIk2h+k such thatR′R = Ir andβ = Rη, whereη is an
r-sized vector of free varying parameters withr < k2h + k, so that (2.1) takes the form:

yt =
[

X ′
t ⊗ Ik

]

Rη + ut, (2.8)

where
[

X ′
t ⊗ Ik

]

R is a k × r matrix. Further, under the assumption that the process is regular [by
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means, with nonsingular covariance matrix of the innovations in the Wold decomposition, so that the
process is not linearly predictable and has a nonsingular instantaneous covariance matrix] with continuous
distribution, the echelon form ensures thatR′

[

Xt ⊗ Ik

]

has a nonsingular covariance matrix, so that
rank

{

R′
[

ΓX ⊗ Ik

]

R
}

= r, whereΓX = E
[

XtX
′
t

]

.

3 Generalized two-step linear estimation

Let
{

y−nT +1, . . . , yT

}

be a random sample of sizenT + T wherenT is a sequence, function ofT , such
that nT → ∞ asT → ∞. Further, consider the infinite-order autoregression (2.5) “truncated” at the
lag-ordernT , precisely:

yt = µΠ(nT ) +

nT
∑

τ=1

Πτyt−τ + ut (nT ) , (3.1)

whereµΠ(nT ) andut (nT ) stand respectively for a constant term and a compound innovation, suchthat
µΠ(nT ) =

(

Ik−
∑nT

τ=1 Πτ

)

µy andut (nT ) =
∑∞

τ=nT +1 Πτ

(

yt−τ −µy

)

+ut. The following assumptions
on the VARMA innovationsut and the truncation ordernT of the long autoregression are needed to
establish the consistency and asymptotic distribution of the linear estimators studied below.

Assumption 3.1 The vectorsut, t ∈ Z, are independent and identically distributed(i.i.d.) with mean
zero, positive definite (p.d.) covariance matrixΣu = E (utu

′
t) and continuous distribution.

Assumption 3.2 There is a finite constantm4 such thatE |ui,tuj,tur,tus,t| ≤ m4 < ∞ , for all t and all
1 ≤ i, j, r, s ≤ k.

Assumption 3.3 nT is a function ofT such thatnT → ∞ andn2
T /T → 0 asT → ∞ , and, for some

c > 0, 0 < δ1 < 1/2 andT sufficiently large,nT ≥ cT δ1 .

Assumption 3.4 nT is a function ofT such thatnT → ∞ andn4
T /T → 0 asT → ∞, and, for some

c > 0, 0 < δ2 < 1/4 andT sufficiently large,nT ≥ cT δ2 .

Assumption3.1 entails a strong VARMA process, while Assumption3.2 ensures that the empirical
autocovariances of the process have finite variances. Assumptions3.3and3.4show alternative conditions
on the truncation lagnT of the first-stage long autoregression, which are required to ensure convergence
and asymptotic normality of the estimators suggested. These assumptions state that nT should grow
towards infinity neither too fast nor too slowly. Further, by invertibility,‖Πτ‖ decays at an exponential
rate [see (2.6)]. Hence, for someδ > 0, whenevernT = cT δ̄ for somec > 0 andδ̄ > 0,

T δ
∞

∑

τ=nT +1

‖Πτ‖ → 0 asT → ∞ . (3.2)

Let Π̃ (nT ) =
[

µ̃Π(nT ), Π̃1 (nT ) , . . . , Π̃nT (nT )
]

= W̃Y (nT )Γ̃
−1
Y (nT ) be the LS estimator of the

coefficient matrixΠ (nT ) =
[

µΠ(nT ), Π1, . . . , ΠnT

]

, where W̃Y (nT ) = T−1
∑T

t=1 ytYt (nT )′ and

Γ̃Y (nT ) = T−1
∑T

t=1 Yt (nT ) Yt (nT )′, with Yt (nT ) =
[

1, y′t−1, . . . , y′t−nT

]′
. Further, let

ũt (nT ) = yt − µ̃Π(nT ) −
nT
∑

τ=1

Π̃τ (nT ) yt−τ , t = 1, . . . , T, (3.3)
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be the LS residuals of the long autoregression (3.1), and setΣ̃u(nT ) = T−1
∑T

t=1 ũt (nT ) ũt (nT )′. Then,
under Assumptions3.1to 3.3, and (3.2), Dufour and Jouini (2010) showed that

(

T 1/2/nT

)∥

∥ũt (nT )−ut

∥

∥

is stochastically bounded, uniformly int = 1, ..., T , that is

∥

∥ũt (nT ) − ut

∥

∥ = Op

(

nT /T 1/2
)

, uniformly in t = 1, ..., T. (3.4)

Then
∥

∥Σ̃u(nT ) − Σu

∥

∥,
∥

∥Σ̃−1
u(nT ) − Σ−1

u

∥

∥ = Op

(

nT /T 1/2
)

. (3.5)

The asymptotic equivalence stated above suggests that we may be able to estimate consistently
the VARMA parameters in (2.8) by replacing the unobserved innovations inXt with their respective
first-stage estimates. Thus, modulo some manipulations, (2.8) can equivalentlybe rewritten as

yt =
[

X̃t (nT )′ ⊗ Ik

]

Rη + et (nT ) , (3.6)

whereX̃t (nT ) =
[

1, ṽt (nT )′ , y′t−1, . . . , y′t−p̄, ũt−1 (nT )′ , . . . , ũt−p̄ (nT )′
]′

, ṽt (nT ) = yt − ũt (nT )
and

et (nT ) = ũt (nT ) +

p̄
∑

j=0

Θj

[

ut−j − ũt−j (nT )
]

. (3.7)

Noting that
∥

∥et (nT ) − ũt (nT )
∥

∥ = Op

(

nT /T 1/2
)

, in view of (3.7) and (3.4), an explicit two-step
(feasible) GLS estimator ofη is simply

η̃ = arg min
η

T
∑

t=1

et (nT )′ Σ̃−1
u(nT )et (nT ) = Q̃X(nT )W̃X(nT ) , (3.8)

whereQ̃X(nT ) =
{

R′
[

Γ̃X(nT ) ⊗ Σ̃−1
u(nT )

]

R
}−1

andW̃X(nT ) = T−1
∑T

t=1 R′
[

X̃t (nT ) ⊗ Σ̃−1
u(nT )

]

yt,

with Γ̃X(nT ) = T−1
∑T

t=1 X̃t (nT ) X̃t (nT )′. In addition, letQX =
{

R′
[

ΓX ⊗Σ−1
u

]

R
}−1

. Then under

suitable conditions, Assumptions3.1 to 3.4, and (3.2), Dufour and Jouini (2010) have shown that

‖η̃ − η‖ = Op

(

T−1/2
)

(3.9)

and
T 1/2

(

η̃ − η
) d−→

T→∞
N

[

0, QX

]

. (3.10)

Further, they suggested̃QX(nT ) as a consistent estimator ofQX .

Now, let Σ̃e(nT ) = (T − p̄)−1 ∑T
t=p̄+1 ẽt (nT ) ẽt (nT )′, where

ẽt (nT ) = yt −
[

X̃t (nT )′ ⊗ Ik

]

Rη̃, t = p̄ + 1, . . . , T. (3.11)

Then, using (2.8), (3.4), (3.9) and (3.11), Dufour and Jouini (2010) showed that

∥

∥ẽt (nT ) − ut

∥

∥ = Op

(

nT /T 1/2
)

, uniformly in t = p̄ + 1, . . . , T. (3.12)

Hence
∥

∥Σ̃e(nT ) − Σu

∥

∥,
∥

∥Σ̃−1
e(nT ) − Σ−1

u

∥

∥ = Op

(

nT /T 1/2
)

. (3.13)
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4 Asymptotic efficiency

The two-step linear estimator described above is not efficient. To allow for efficiency, a further linear
regression is needed. As will be shown below, the latter is achieved by exploiting the nonlinear structure
of the VARMA innovations in the model parameters. Unlike Hannan and Kavalieris (1984)’s procedure
which is heavy to implement, even in small systems, and whose fourth-stage (efficient) estimator does
not explicitly show the echelon-form restrictions, we yield a simple and compact efficient estimator with
a simple estimator of its covariance matrix. However, a brief description of its competitors is required.

4.1 Competing procedures

Using our setup, we stress that running OLS on (3.6) corresponds to thethird-stage and the second-stage
estimation procedures of Hannan and Kavalieris (1984) and Reinsel et al. (1992), respectively. Denote by
η̃ the resulting estimators and letµ̃Φ, Φ̃i andΘ̃j be the implied two-step OLS estimates ofµΦ, Φi andΘj ,
respectively. Further, designate byũt the implied “implicit” VARMA innovation estimates or residuals
such that

Φ̃ (L) yt = µ̃Φ + Θ̃ (L) ũt, (4.1)

whereΦ̃ (L) = Φ̃0 −
∑p̄

i=1 Φ̃iL
i andΘ̃ (L) =

∑p̄
j=0 Θ̃jL

j , with Φ̃0 = Θ̃0. Solving forũt, one gets

ũt =
∞

∑

τ=0

Λτ (η̃)
[

Φ̃0yt−τ −
p̄

∑

i=1

Φ̃iyt−i−τ − µ̃Φ

]

, (4.2)

where
∑∞

τ=0 Λτ (η̃)Lτ = Θ̃ (L)−1. As suggested in the literature [see Hannan and Kavalieris (1984)
and Reinsel et al. (1992)], these implicit residuals,ũt, are approximated (or filtered) with

εt (η̃) =

t+nT−1
∑

τ=0

Λτ (η̃)
[

Φ̃0yt−τ −
p̄

∑

i=1

Φ̃iyt−i−τ − µ̃Φ

]

, t = −nT + 1, . . . , T. (4.3)

Hannan-Kavalieris (HK) procedure:

Let Vt (η̃) =
[

1, y′t − εt (η̃)′ , y′t−1, . . . , y′t−p̄, εt−1 (η̃)′ , . . . , εt−p̄ (η̃)′
]′

be the regressor vector based on

the two-step OLS residualsεt (η̃) defined above. Also, setWt (η̃) =
∑t+nT−1

τ=0 R′
[

Vt−τ (η̃) ⊗ Λτ (η̃)′
]

.
Then, the efficient estimator of Hannan and Kavalieris (1984) forη is

η̂KH = η̃ +
{

T
∑

t=−nT +1

Wt (η̃) Σ̃−1
e(nT )Wt (η̃)′

}−1
T

∑

t=−nT +1

Wt (η̃) Σ̃−1
e(nT )εt (η̃) (4.4)

whereη̃ andΣ̃e(nT ) are the respective OLS estimators ofη andΣu obtained from model (3.6). These

authors have then proposedΣ̺̃(η̃,η̂HK) = (nT + T − p̄)−1 ∑T
t=−nT +1+p̄ ̺t (η̃, η̂HK) ̺t (η̃, η̂HK)′, where

̺t (η̃, η̂HK) = εt (η̃) − Wt (η̃)′ (η̂HK − η̃), as the fourth-stage estimator ofΣu.

Reinsel-Basu-Yap (RBY) procedure:

Manipulating (2.1), the GLS estimator of Reinsel et al. (1992) obtains from the linear regression:

yt (η̃) =
[

Vt (η̃)′ ⊗ Ik

]

Rη +

p̄
∑

j=0

Θ̃jut−j + Dt (η̃, η) , t = −nT + 1, . . . , T, (4.5)
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whereyt (η̃) = yt − εt (η̃) +
∑p̄

j=0 Θ̃jεt−j (η̃) andDt (η̃, η) =
∑p̄

j=0

(

Θ̃j − Θj

)[

εt−j (η̃) − ut−j

]

.
Dropping the compound termDt (η̃, η) – considered as being negligible – from model (4.5), then setting
y (η̃) =

[

y−nT +1 (η̃)′ , . . . , yT (η̃)′
]′

, V (η̃) =
[

V−nT +1 (η̃) , . . . , VT (η̃)
]

andΘ̃ =
∑p̄

j=0

[

L
j ⊗ Θ̃j

]

,
whereL

j stands for a(nT + T ) × (nT + T ) lag matrix which has ones on thejth diagonal below the
main diagonal and zeros elsewhere (L

0 reduces to the identity matrix), we get the stacked form model

y (η̃) =
[

V (η̃)′ ⊗ Ik

]

Rη + Θ̃u, (4.6)

whereu =
[

u′
−nT +1, . . . , u′

T

]′
, with Θ̃u having a covariance matrix estimatorΞ̃ε(η̃) = Θ̃

[

InT +T ⊗
Σ̃ε(η̃)

]

Θ̃′, whereΣ̃ε(η̃) = (nT + T )−1 ∑T
t=−nT +1 εt (η̃) εt (η̃)′ and Θ̃ is a k (nT + T ) × k (nT + T )

matrix based on the two-step OLS estimates. Therefore, the GLS estimator of Reinsel et al. (1992) is

η̂RBY =
{

R′
[

V (η̃) ⊗ Ik

]

Ξ̃−1
ε(η̃)

[

V (η̃)′ ⊗ Ik

]

R
}−1

R′
[

V (η̃) ⊗ Ik

]

Ξ̃−1
ε(η̃)y (η̃) , (4.7)

thus requiring the burdensome task, even in small samples, of inverting thek (nT + T ) × k (nT + T )
high-dimensional matrix̃Ξε(η̃). An improved version of this estimator is obtained by deleting the firstkp̄
components ofy (η̃) and p̄ columns ofV (η̃) and only retaining thek (nT + T − p̄) × k (nT + T − p̄)
lower right corner block matrix of̃Ξε(η̃), but it still requires the systematic inversion of a large matrix.

Poskitt-Salau (PS) procedure:

The second-stage estimation procedure of Poskitt and Salau (1995) consists in running LS on a variant of
(3.6), precisely

ṽt (nT ) =
[

X̃t (nT )′ ⊗ Ik

]

Rη + ζt, (4.8)

whereζt =
∑p̄

j=0 Θjξt−j , with ξt = ut − ũt (nT ). Further, set̃v (nT ) =
[

ṽ1 (nT )′ , . . . , ṽT (nT )′
]′

,

X̃ (nT ) =
[

X̃1 (nT ) , . . . , X̃T (nT )
]

andζ =
[

ζ1
′, . . . , ζ ′T

]′
, whereζ = Θξ andξ =

[

ξ1
′, . . . , ξT

′
]′

.
Then, the efficient GLS estimator of Poskitt and Salau (1995) is

η̂PS =
{

R′
[

X̃ (nT ) ⊗ Ik

]

Ξ̃−1
u(nT )

[

X̃ (nT )′ ⊗ Ik

]

R
}−1

R′
[

X̃ (nT ) ⊗ Ik

]

Ξ̃−1
u(nT )ṽ (nT ) , (4.9)

where, again, one has to invert akT × kT high-dimensional matrix̃Ξu(nT ) = Θ̃
[

IT ⊗ Σ̃u(nT )

]

Θ̃′

(estimating the covariance matrix ofζ), with Θ̃ now corresponding to the OLS moving-average parameter
estimates from model (4.8). An improved version ofη̂PS is obtained in a similar way tôηRBY .

4.2 Our procedure

Having shown how our setup is practical and flexible to adapt to alternativeprocedure, we now derive our
efficient linear estimator. In view of (3.7), the two-step feasible GLS (eventually two-step OLS) residuals
(3.11) are such that

ẽt (nT ) = ũt (nT ) +

p̄
∑

j=0

Θ̃j

[

ũt−j − ũt−j (nT )
]

, (4.10)

where, similarly,ũt are the implicit VARMA residuals or estimates ofut matching the two-step GLS
(eventually OLS) estimator̃η since (4.10) can be expressed as (4.1). Indeed, because the errorterms
et (nT ) in (3.7) are functions of the actual innovationsut, it follows that by estimatinget (nT ) one
implicitly and simultaneously estimatesut. More importantly, (4.10) reveals that these implicit estimates
ũt are endogenous functions not only of the two-step GLS moving average coefficient estimates̃Θj and
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the resulting residuals̃et (nT ) as well, but also of the first-stage OLS autoregressive residualsũt (nT ).
Hence, using the fact that̃Θ (L)−1 =

∑∞
τ=0 Λτ (η̃)Lτ , one sees that

ũt = ũt (nT ) +
∞

∑

τ=0

Λτ (η̃)
[

ẽt−τ (nT ) − ũt−τ (nT )
]

. (4.11)

This paper proposes a new recursive filtering scheme for approximatingthese implicit residuals with

ut (η̃) = ũt (nT ) +
t−1
∑

τ=0

Λτ (η̃)
[

ẽt−τ (nT ) − ũt−τ (nT )
]

, t = 1, . . . , T, (4.12)

initiating with ẽt (nT ) = ũt (nT ) [henceut (η̃) = ũt (nT )] for 1 ≤ t ≤ p̄. Precisely, our scheme
describes the pointwise adjustment mechanism through which the approximate (or filtered) implicit
VARMA residualsut (η̃) are recursively computed aroundũt (nT ).

Corollary 4.1 Let {yt : t ∈ Z} be a k-dimensional stationary invertible stochastic process with the
VARMA representation in the echelon form given by(2.1)–(2.4). Let alsoũt be the implicit VARMA
innovation estimates matching the two-step estimatorη̃, as equivalently defined in(4.2) or (4.11) but
respectively approximated with(4.3) and(4.12). Then, under Assumptions3.1–3.4,

∥

∥ũt − εt (η̃)
∥

∥ = Op

(

ρt+nT
)

and
∥

∥ũt − ut (η̃)
∥

∥ = Op

(

ρt nT

T 1/2

)

. (4.13)

Obviously, the recursive schemes (4.3) and (4.12) yield approximations with different (pointwise)
convergence speeds towards the implicit VARMA residualsũt, regardless of the persistence degree of
the process and the estimation method (OLS or GLS) used for obtaining the two-step VARMA parameter
estimates. However, while noting that we loosenT observations with our recursive scheme, we stress that
this is compensated with the use of better initial values, namely the first-stage autoregressive residuals that
we know are consistent; see (3.4). Of course, the recursive schemesabove are asymptotically equivalent
only when the Kronecker indices are all equal, namely when GLS reducesto OLS.

Similarly, it is worth emphasizing that the VARMA innovationut can be expressed from (3.7) as

ut = ũt (nT ) +
∞

∑

τ=0

Λτ (η)
[

et−τ (nT ) − ũt−τ (nT )
]

, (4.14)

and then be approximated with

ut (η) = ũt (nT ) +
t−1
∑

τ=0

Λτ (η)
[

et−τ (nT ) − ũt−τ (nT )
]

, t = 1, . . . , T. (4.15)

Hence,‖ut − ut (η)‖ = Op

(

ρtnT /T 1/2
)

, in view of (3.4). Also, letΣ̃u(η̃) = T−1
∑T

t=1 ut (η̃) ut (η̃)′.
Then its rate of convergence toΣu follows.

Proposition 4.1 Let {yt : t ∈ Z} be ak-dimensional stationary invertible stochastic process with the
VARMA representation in the echelon form given by(2.1)–(2.4). Then, under Assumptions3.1–3.4,

∥

∥Σ̃u(η̃) − Σu

∥

∥,
∥

∥Σ̃−1
u(η̃) − Σ−1

u

∥

∥ = Op

(

T−1/2
)

. (4.16)
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Now, letXt (η̃) =
[

1, vt (η̃)′ , y′t−1, . . . , y′t−p̄, ut−1 (η̃)′ , . . . , ut−p̄ (η̃)′
]′

with vt (η̃) = yt − ut (η̃).

Further, setZ◦
t (η̃, η) =

∑t−1
τ=0 R′

[

Xt−τ (η̃) ⊗ Λτ (η)′
]

. Then manipulating (4.15) and (4.12), one gets

ut (η̃) − ut (η) = −Z◦
t (η̃, η)′

(

η̃ − η
)

. (4.17)

The latter expression can further be rearranged to obtain the linear regression model

ωt (η̃) = Zt (η̃)′ η + ǫt (η̃, η) , (4.18)

where

ωt (η̃) = ut (η̃) + Zt (η̃)′ η̃ and ǫt (η̃, η) = ut (η) +
[

Zt (η̃) − Z◦
t (η̃, η)

]′(
η̃ − η

)

, (4.19)

with Zt (η̃) =
∑t−1

τ=0 R′
[

Xt−τ (η̃) ⊗ Λτ (η̃)′
]

. Note that (4.17) is an identity obtained by exploiting
the nonlinear structure of the VARMA innovations in the model parameters. Soit does not stand for a
Taylor expansion. More importantly, the complex dynamic structure of the error termsǫt (η̃, η) driving the
process (4.18) – missed by Hannan and Kavalieris (1984) in their fourth stage – is completely specified up
to the unknown parameter vectorη; see (4.19). Hence, once estimated, these errors provide a closed form
solution for computing accurately the approximate implicit VARMA residuals or innovation estimates
matching the three-step efficient linear estimator that we shall define below. Such a result has not been
established yet in the literature.

In view of (4.17) and (4.19) [or (4.18) and (4.19)], one sees, by Lemma2.2 of Kreiss and Franke
(1992) and (3.9), that

∥

∥ǫt (η̃, η) − ut (η̃)
∥

∥ = Op

(

T−1/2
)

, which suggests obtaining a third-stage GLS
(fully efficient) linear estimator ofη, sayη̂, such that

η̂ = arg min
η

T
∑

t=1

ǫt (η̃, η)′ Σ̃−1
u(η̃)ǫt (η̃, η) = Q̃X(η̃)W̃X (η̃), (4.20)

where Q̃X(η̃) =
{

T−1
∑T

t=1 Zt (η̃) Σ̃−1
u(η̃)Zt (η̃)′

}−1
and W̃X(η̃) = T−1

∑T
t=1 Zt (η̃) Σ̃−1

u(η̃)ωt (η̃).

Further, letΩ̃X(η̃) = T−1
∑T

t=1 Zt (η̃) Σ̃−1
u(η̃)ut (η̃). Then, in view ofωt (η̃) [see (4.19)],

η̂ = η̃ + Q̃X(η̃)Ω̃X(η̃). (4.21)

Clearly, our third-stage GLS estimators are different from their competitorssince alternative
regressors and weighting matrix are used in their computation. Precisely, weexploit the explicit form
of the second-stage regression residuals to derive a new recursivefiltering scheme for approximating the
implicit VARMA residuals matching the two-step estimator [see (4.12)]. These well behaved approximate
residuals stand for ”new regressors” which, unlike predecessors [see (4.3)], depend on consistent (better)
initial values, and explicitly take into account the truncation error of the first-stage autoregression along
with some adjustments with respect to the second-stage regression residuals. Finally, it is noteworthy that
η̂ is asymptotically equivalent to ML under Gaussian errors since∂ut(η)

∂η′ |η=η̃ = −Zt (η̃)′ [see (4.17)], and
that it corresponds to an iteration of the scoring algorithm starting fromη̃, in view of (4.21).

Another feature characterizing the computation of our fully efficient estimators, compared to those of
Hannan and Kavalieris (1984) and Poskitt and Salau (1995), with the exception of Reinsel et al. (1992),
consists in using a weighting matrix exhibiting faster rate of convergence, hence better sample properties;
see (3.13) and (3.5) versus Propositions4.1. However, we stress that, although Reinsel et al. (1992)
procedure’s relies on a refined weighting matrix, it still uses filtered residuals from an alternative scheme.
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Now, letQ̃◦
X(η̃) =

{

T−1
∑T

t=1 Z◦
t (η̃, η) Σ̃−1

u(η̃)Z
◦
t (η̃, η)′

}−1
andQX(η) =

{

E
[

ZtΣ
−1
u Zt

′
]

}−1
, with

Zt =
∑∞

τ=0 R′
[

Xt−τ ⊗Λτ (η)′
]

. Also, denote by‖A‖2
1 the largest eigenvalue ofA′A, for any matrixA.

Proposition 4.2 Let {yt : t ∈ Z} be ak-dimensional stationary invertible stochastic process with the
VARMA representation in the echelon form given by(2.1)–(2.4). Then, under Assumptions3.1–3.4,

∥

∥Q̃◦
X(η̃) − QX(η)

∥

∥

1
,
∥

∥Q̃X(η̃) − Q̃◦
X(η̃)

∥

∥

1
= Op

(

T−1/2
)

. (4.22)

The next theorems establish the convergence and the asymptotic normality of our efficient estimator.

Theorem 4.1 Let {yt : t ∈ Z} be a k-dimensional stationary invertible stochastic process with the
VARMA representation in the echelon form given by(2.1)–(2.4). Then, under Assumptions3.1–3.4,

‖η̂ − η‖ = Op

(

T−1/2
)

. (4.23)

Theorem 4.2 Let {yt : t ∈ Z} be a k-dimensional stationary invertible stochastic process with the
VARMA representation in the echelon form given by(2.1)–(2.4). Then, under Assumptions3.1–3.4,

T 1/2
(

η̂ − η
) d−→

T→∞
N

[

0, QX(η)

]

. (4.24)

A consistent estimator of its asymptotic covariance matrix is then
{

∑T
t=1 Zt (η̃) Σ̃−1

u(η̃)Zt (η̃)′
}−1

.

As mentioned above with respect to (4.19), we suggest better filtering accurately, from the third-stage
regression residualsǫt (η̃, η̂), well-behaved VARMA innovation estimates in finite samples, sayut (η̂),
such that:

ǫt (η̃, η̂) = ut (η̂) +
[

Zt (η̃) − Z◦
t (η̃, η̂)

]′(
η̃ − η̂

)

, t = p̄ + 1, . . . , T, (4.25)

where ǫt (η̃, η̂) = ωt (η̃) − Zt (η̃)′ η̂ and Z◦
t (η̃, η̂) =

∑t−1
τ=0 R′

[

Xt−τ (η̃) ⊗ Λτ (η̂)′
]

. Finally, let

Σ̃u(η̂) = (T − p̄)−1 ∑T
t=p̄+1 ut (η̂) ut (η̂)′ be the resulting third-stage efficient estimator of the VARMA

innovation covariance matrixΣu. Then its rate of convergence follows.

Proposition 4.3 Let {yt : t ∈ Z} be ak-dimensional stationary invertible stochastic process with the
VARMA representation in the echelon form given by(2.1)–(2.4). Then, under Assumptions3.1–3.4,

∥

∥Σ̃u(η̂) − Σu

∥

∥ = Op

(

T−1/2
)

. (4.26)

To roughly show to which extent̃Σ̺(η̃,η̂HK) is less accurate thañΣu(η̂) in estimatingΣu in finite

samples, assume for simplicity that the HK procedure usesut (η̃) andΣ̃u(η̃) instead ofεt (η̃) andΣ̃e(nT ).
Therefore,Wt (η̃) = Zt (η̃), η̂HK = η̂ and then̺ t (η̃, η̂HK) = ǫt (η̃, η̂). Hence, in view of (4.25), our
well-behaved error covariance estimator suggested above is of orderT−1 more accurate than the one by
the fourth-stage of Hannan and Kavalieris (1984) in estimating the VARMA innovation covariance matrix
Σu, since

∥

∥̺t (η̃, η̂HK) − ut

∥

∥ =
∥

∥ut (η̂) − ut

∥

∥ + Op

(

T−1
)

, t = p̄ + 1, . . . , T. (4.27)

5 Simulation study

The small-sample performance of our proposed estimators is studied with MonteCarlo (MC) simulations.
We only focus on the fully efficient estimates since they stand for the major contribution of the paper.

10



Specifically, we consider a comparative study involving those suggested by Hannan and Kavalieris
(1984) (HK), Reinsel et al. (1992) (RBY) and Poskitt and Salau (1995) (PS), respectively. In these
simulations, the improved versions of the last two estimators described above were used. In addition, two
versions of our proposed three-step estimator, say TS1 and TS2, wereconsidered. The first one relies
on the two-step GLS estimator given in (3.8), while the second is based on the two-step OLS estimator
studied in Dufour and Jouini (2005). Obviously TS1 and TS2 are identical when the Kronecker indices
characterizing the echelon canonical form are all equal. While noting thata two step OLS estimation has
been used for obtaining the GLS estimators of Hannan and Kavalieris (1984) and Reinsel et al. (1992),
those of Poskitt and Salau (1995) were obtained by implementing their three-step procedure in full. Of
course, all competing (fully efficient) estimators are asymptotically equivalent to ML estimators since
they roughly correspond to one iteration of the Gauss-Newton algorithm, starting from a

√
T -consistent

estimator. Finally, ML estimation was omitted in the simulations for the following reasons. First, its finite
sample properties have been extensively studied in the literature and were found more or less satisfactory
given the model at hand. Second, besides the fact that state-space formulation based ML estimation of
VARMA models still requires potentially high evaluations of the EM algorithm, more especially in big or
persistent systems, it also fails to handle the parsimonious echelon form parameterization since it is not
guaranteed that the resulting estimated echelon VARMA models are stationary and invertible. Third, in
big systems, nonlinear estimation procedures cannot compete with linear methods from the computational
cost viewpoint, especially for simulation-based inference using bootstrapmethods or maximized Monte
Carlo (MMC) tests [see Dufour (2006) and Dufour and Jouini (2006)]. Finally, as the paper deals with
efficient linear estimation methods for VARMA models, we only studied the finite-sample performance
of the main procedures compared to the ones we suggested.

We simulate two bivariate stationary invertible Gaussian ARMA processes with drifts and respective
Kronecker indices(1, 2) and(2, 1), using sample sizes 100 and 200. Simulation results on the bias (in
absolute value) and MSE of the estimates for each procedure are given inTables 1–4. These tables
also show the MSE ratios of the alternative fully efficient estimators with respect to TS1. These results
are based on 1000 replications using GAUSS random number generator.To avoid numerical problems
due to initialization, extra first 100 pseudo-data were generated then discarded. Trials associated with
estimates implying noninvertible VARMA processes are thrown then replaced.In all simulations, the
rate of replacement did not exceed 5% in the worst case. The two-step echelon parameter estimates
were obtained from models using, as regressors, autoregressive residuals associated with autoregression
truncation set to the integer part oflnT thenT−1/2, since it has been recommended in the literature to
choose the truncation order between these two values. This strategy has been considered to draw the
effect of the first-stage autoregression lag-order choice on the finite sample properties of the echelon
parameter estimates. The error covariance matrix withσ11 = .49, σ22 = .29 andσ12 = σ21 = −.14, is
used for both simulated models. The parameter values of the simulated echelon VARMA models as well
as the resulting eigenvalues (describing the persistence degree of the model) are given in the tables. For
a better comparison with HK and RBY procedures, the latter are finally computed after discarding the
first nT values of the residualsεt (η̃) [namely,ε−nT +1 (η̃),...,ε0 (η̃); see (4.3)] to avoid, though partially,
problems due to initialization since preliminary simulations (that we omitted) showed poor HK estimates.

For both models, simulation evidence shows that, unlike TS1, TS2 and RBY methods whose
respective estimates show small to moderate bias, HK and PS procedures yield estimates with substantial
bias associated with relatively significant MSE forT = 100 [see upper panels of Tables 1 and 3]. These
biases decrease with the sample size [see Tables 1–4]. It is suspected that the bias associated with PS
procedure is due to the weighting matrix used in the computation of the estimates. Poskitt and Salau
(1995) argued that the error term in their linear regression follows a moving-average process of orderp̄,
namelyζt =

∑p̄
j=0 Θjξt−j with T−1

∑T
t=1 ξtξ

′
t = Op

(

nT /T
)

Σu [see Hannan and Kavalieris (1986) and
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Table 1: Echelon VARMA model with Kronecker indices (1,2): a comparative simulation study on alternative fully efficient GLS estimators

Sample SizeT = 100

nT Coefficient Value Bias MSE MSE Ratio
TS1 TS2 HK RBY PS TS1 TS2 HK RBY PS TS2 HK RBY PS

4 µΦ,1 .000 .009 .010 .001 .011 .009 .200 .200 .257 .204 .190 1.000 1.286 1.020 .952
µΦ,2 .000 .003 .004 .001 .004 .000 .145 .146 .179 .151 .123 1.006 1.231 1.039 .845
φ11,1 1.200 .020 .020 .005 .018 .008 .056 .057 .079 .057 .051 1.001 1.390 1.012 .896
φ12,1 .240 .000 .000 .003 .001 .009 .046 .046 .062 .047 .044 1.001 1.361 1.018 .969
φ22,1 .400 .005 .000 .015 .000 .135 .111 .106 .134 .115 .181 .956 1.205 1.033 1.622
φ21,2 -.900 .005 .008 .013 .006 .089 .078 .074 .094 .077 .121 .950 1.212 .987 1.558
φ22,2 -.270 .002 .000 .005 .002 .048 .068 .068 .086 .073 .083 1.000 1.270 1.082 1.224
θ11,1 .800 .015 .014 .025 .013 .210 .096 .097 .111 .097 .219 1.004 1.153 1.013 2.274
θ21,1 .500 .007 .004 .025 .002 .081 .090 .089 .102 .095 .115 .994 1.136 1.060 1.274
θ12,1 .400 .018 .017 .104 .024 .213 .117 .118 .185 .126 .239 1.006 1.583 1.081 2.043
θ22,1 .400 .037 .030 .059 .033 .168 .135 .127 .160 .148 .220 .941 1.185 1.102 1.630
θ21,2 .340 .035 .028 .004 .030 .334 .165 .154 .164 .166 .376 .935 .993 1.004 2.274
θ22,2 .850 .073 .067 .204 .078 .406 .159 .153 .261 .159 .418 .960 1.639 .997 2.626

10 µΦ,1 .000 .002 .003 .002 .002 .002 .206 .208 .266 .211 .199 1.009 1.291 1.025 .969
µΦ,2 .000 .005 .005 .002 .004 .003 .169 .168 .210 .169 .155 .994 1.240 1.003 .919
φ11,1 1.200 .024 .025 .024 .023 .022 .062 .062 .079 .064 .060 1.009 1.284 1.038 .971
φ12,1 .240 .000 .000 .003 .000 .000 .046 .047 .073 .050 .046 1.007 1.564 1.068 .988
φ22,1 .400 .006 .003 .003 .003 .020 .105 .102 .110 .111 .107 .968 1.046 1.056 1.018
φ21,2 -.900 .014 .012 .005 .007 .003 .081 .078 .088 .079 .078 .960 1.082 .983 .970
φ22,2 -.270 .003 .002 .001 .000 .007 .064 .064 .075 .070 .064 .996 1.174 1.090 .990
θ11,1 .800 .012 .009 .024 .000 .053 .100 .100 .102 .103 .106 1.006 1.020 1.031 1.062
θ21,1 .500 .000 .001 .005 .006 .009 .090 .090 .096 .095 .094 .999 1.066 1.051 1.036
θ12,1 .400 .011 .009 .025 .003 .040 .122 .124 .161 .135 .133 1.019 1.321 1.109 1.092
θ22,1 .400 .028 .028 .032 .026 .056 .126 .122 .127 .132 .127 .974 1.006 1.047 1.007
θ21,2 .340 .019 .022 .039 .026 .066 .160 .156 .161 .172 .189 .974 1.004 1.077 1.185
θ22,2 .850 .050 .051 .076 .033 .090 .147 .148 .154 .153 .156 1.005 1.043 1.037 1.054

Note – TS1 and TS2 are the three-step GLS estimators based on the two-stepGLS estimator and the two-step OLS estimator, respectively. While HK, RBY and PS stand for the
fully efficient GLS estimators suggested by Hannan and Kavalieris (1984), Reinsel et al. (1992) and Poskitt and Salau (1995), respectively.These estimates are obtained with
1000 replications. The eigenvalues of the model are real .900, .400 and .300 for the autoregressive (AR) operator, and real .824 and conjugate -.188̄+.790i (.813 in norm) for the
moving-average (MA) operator. Recall that the number of eigenvalues in each of the AR and MA operators is equal to the McMillan degree.
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Table 2: Echelon VARMA model with Kronecker indices (1,2): a comparative simulation study on alternative fully efficient GLS estimators

Sample SizeT = 200

nT Coefficient Value Bias MSE MSE Ratio
TS1 TS2 HK RBY PS TS1 TS2 HK RBY PS TS2 HK RBY PS

5 µΦ,1 .000 .001 .001 .003 .001 .000 .114 .114 .177 .116 .110 1.001 1.547 1.016 .961
µΦ,2 .000 .000 .000 .000 .000 .000 .094 .094 .119 .093 .094 1.003 1.268 .996 1.006
φ11,1 1.200 .012 .012 .004 .010 .011 .038 .038 .046 .038 .037 .999 1.208 1.016 .972
φ12,1 .240 .001 .001 .013 .000 .002 .030 .030 .046 .032 .030 .999 1.488 1.048 .991
φ22,1 .400 .000 .002 .011 .004 .012 .062 .060 .073 .065 .076 .968 1.189 1.056 1.232
φ21,2 -.900 .005 .006 .003 .001 .003 .044 .044 .053 .046 .051 .982 1.196 1.029 1.157
φ22,2 -.270 .000 .001 .003 .001 .015 .040 .039 .045 .041 .046 .984 1.148 1.038 1.164
θ11,1 .800 .002 .000 .035 .002 .111 .060 .061 .078 .064 .123 1.018 1.301 1.058 2.038
θ21,1 .500 .000 .000 .005 .005 .028 .058 .058 .064 .062 .065 .999 1.085 1.063 1.117
θ12,1 .400 .005 .003 .081 .009 .093 .075 .076 .134 .085 .130 1.007 1.781 1.132 1.720
θ22,1 .400 .011 .008 .029 .011 .023 .073 .070 .080 .081 .080 .961 1.103 1.095 1.101
θ21,2 .340 .008 .005 .041 .016 .063 .097 .094 .118 .104 .136 .966 1.212 1.068 1.391
θ22,2 .850 .030 .028 .118 .031 .206 .087 .087 .157 .094 .218 .993 1.794 1.074 2.490

14 µΦ,1 .000 .004 .004 .004 .003 .004 .115 .116 .170 .120 .112 1.006 1.472 1.037 .969
µΦ,2 .000 .005 .005 .005 .004 .004 .093 .094 .115 .097 .090 1.000 1.232 1.036 .968
φ11,1 1.200 .011 .011 .012 .011 .010 .038 .039 .052 .040 .038 1.006 1.351 1.038 .985
φ12,1 .240 .000 .000 .001 .000 .000 .031 .031 .045 .033 .032 1.001 1.433 1.057 1.012
φ22,1 .400 .000 .000 .000 .001 .013 .062 .060 .063 .063 .067 .975 1.017 1.020 1.081
φ21,2 -.900 .005 .005 .005 .004 .002 .047 .046 .048 .048 .049 .985 1.028 1.025 1.035
φ22,2 -.270 .000 .000 .001 .000 .005 .039 .039 .043 .041 .040 .985 1.085 1.029 1.014
θ11,1 .800 .001 .004 .000 .011 .019 .063 .064 .064 .067 .061 1.015 1.017 1.062 .972
θ21,1 .500 .001 .001 .002 .002 .005 .060 .059 .064 .062 .063 .997 1.077 1.035 1.056
θ12,1 .400 .000 .002 .002 .008 .017 .079 .079 .086 .083 .083 1.004 1.096 1.054 1.058
θ22,1 .400 .010 .008 .010 .006 .020 .072 .071 .074 .072 .071 .981 1.032 1.003 .991
θ21,2 .340 .009 .008 .010 .005 .030 .096 .094 .097 .100 .109 .982 1.016 1.042 1.138
θ22,2 .850 .021 .020 .027 .009 .038 .088 .087 .086 .089 .089 .984 .981 1.011 1.008

Note – TS1 and TS2 are the three-step GLS estimators based on the two-stepGLS estimator and the two-step OLS estimator, respectively. While HK, RBY and PS stand for the
fully efficient GLS estimators suggested by Hannan and Kavalieris (1984), Reinsel et al. (1992) and Poskitt and Salau (1995), respectively.These estimates are obtained with
1000 replications. The eigenvalues of the model are real .900, .400 and .300 for the autoregressive (AR) operator, and real .824 and conjugate -.188̄+.790i (.813 in norm) for the
moving-average (MA) operator. Recall that the number of eigenvalues in each of the AR and MA operators is equal to the McMillan degree.
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Table 3: Echelon VARMA model with Kronecker indices (2,1): a comparative simulation study on alternative fully efficient GLS estimators

Sample SizeT = 100

nT Coefficient Value Bias MSE MSE Ratio
TS1 TS2 HK RBY PS TS1 TS2 HK RBY PS TS2 HK RBY PS

4 µΦ,1 .000 .001 .001 .001 .000 .001 .158 .159 .237 .166 .164 1.007 1.503 1.053 1.040
µΦ,2 .000 .004 .004 .006 .005 .001 .188 .189 .199 .190 .180 1.006 1.059 1.015 .958
φ21,0 .500 .003 .004 .005 .005 .003 .033 .033 .062 .036 .033 1.020 1.873 1.093 1.004
φ11,1 1.800 .002 .001 .030 .000 .010 .034 .034 .063 .039 .034 1.009 1.817 1.134 1.001
φ21,1 -.400 .037 .041 .016 .045 .038 .096 .100 .179 .112 .095 1.033 1.852 1.155 .982
φ22,1 .800 .064 .069 .038 .075 .067 .144 .149 .252 .166 .142 1.029 1.746 1.148 .982
φ11,2 -.360 .005 .007 .157 .011 .053 .111 .112 .246 .130 .116 1.007 2.212 1.169 1.042
φ12,2 -.900 .012 .015 .251 .021 .083 .169 .169 .382 .196 .176 1.002 2.261 1.163 1.042
θ11,1 .330 .055 .055 .024 .043 .118 .130 .131 .214 .143 .160 1.012 1.651 1.105 1.237
θ21,1 -.180 .016 .016 .085 .000 .087 .108 .109 .209 .128 .132 1.008 1.924 1.179 1.213
θ12,1 -.200 .021 .022 .066 .014 .111 .141 .144 .183 .154 .169 1.019 1.297 1.090 1.201
θ22,1 -.400 .072 .080 .126 .071 .188 .176 .184 .336 .202 .233 1.043 1.905 1.146 1.320
θ11,2 -.200 .061 .064 .098 .055 .070 .138 .140 .255 .158 .129 1.014 1.849 1.145 .940
θ12,2 .920 .024 .032 .334 .015 .191 .205 .210 .473 .243 .253 1.027 2.307 1.185 1.234

10 µΦ,1 .000 .000 .000 .005 .000 .001 .173 .173 .198 .175 .183 1.002 1.143 1.011 1.060
µΦ,2 .000 .000 .000 .002 .000 .001 .208 .208 .217 .209 .208 .999 1.042 1.004 1.001
φ21,0 .500 .000 .001 .000 .001 .006 .040 .040 .048 .041 .041 1.005 1.190 1.011 1.029
φ11,1 1.800 .001 .002 .000 .005 .005 .038 .040 .046 .044 .039 1.040 1.197 1.139 1.028
φ21,1 -.400 .043 .047 .039 .047 .030 .116 .118 .142 .121 .112 1.018 1.220 1.040 .966
φ22,1 .800 .081 .086 .076 .085 .069 .172 .175 .208 .179 .169 1.017 1.208 1.043 .984
φ11,2 -.360 .022 .020 .034 .011 .056 .115 .119 .145 .128 .127 1.031 1.259 1.112 1.103
φ12,2 -.900 .046 .043 .066 .031 .098 .173 .176 .218 .187 .195 1.021 1.260 1.082 1.126
θ11,1 .330 .061 .061 .051 .052 .075 .139 .141 .181 .146 .151 1.015 1.302 1.049 1.084
θ21,1 -.180 .013 .013 .003 .007 .000 .123 .123 .162 .133 .123 .993 1.313 1.076 .994
θ12,1 -.200 .031 .030 .032 .025 .045 .148 .152 .168 .157 .158 1.025 1.132 1.062 1.064
θ22,1 -.400 .095 .100 .097 .086 .089 .213 .219 .258 .224 .213 1.024 1.208 1.049 .997
θ11,2 -.200 .062 .063 .040 .068 .034 .143 .148 .187 .158 .132 1.035 1.311 1.103 .926
θ12,2 .920 .071 .073 .107 .043 .122 .226 .239 .265 .248 .237 1.058 1.170 1.095 1.048

Note – TS1 and TS2 are the three-step GLS estimators based on the two-stepGLS estimator and the two-step OLS estimator, respectively. While HK, RBY and PS stand for the
fully efficient GLS estimators suggested by Hannan and Kavalieris (1984), Reinsel et al. (1992) and Poskitt and Salau (1995), respectively.These estimates are obtained with
1000 replications. The eigenvalues of the model are real .800 and a double root .900 for the autoregressive (AR) operator, and real -.530 and conjugate -.350̄+.584i (.681 in norm)
for the moving-average (MA) operator. Recall that the number of eigenvalues in each of the AR and MA operators is equal to the McMillan degree.
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Table 4: Echelon VARMA model with Kronecker indices (2,1): a comparative simulation study on alternative fully efficient GLS estimators

Sample SizeT = 200

nT Coefficient Value Bias MSE MSE Ratio
TS1 TS2 HK RBY PS TS1 TS2 HK RBY PS TS2 HK RBY PS

5 µΦ,1 .000 .000 .000 .002 .000 .000 .078 .079 .103 .080 .081 1.002 1.306 1.019 1.027
µΦ,2 .000 .000 .000 .000 .000 .000 .083 .083 .084 .083 .081 1.003 1.013 .999 .978
φ21,0 .500 .001 .001 .002 .001 .001 .019 .019 .023 .020 .020 1.004 1.185 1.031 1.046
φ11,1 1.800 .002 .001 .016 .001 .004 .023 .023 .035 .025 .023 1.003 1.498 1.080 1.008
φ21,1 -.400 .016 .017 .012 .017 .016 .059 .060 .067 .062 .062 1.013 1.132 1.055 1.058
φ22,1 .800 .028 .030 .027 .030 .027 .087 .088 .099 .092 .092 1.012 1.132 1.054 1.050
φ11,2 -.360 .000 .000 .076 .001 .025 .073 .073 .136 .081 .075 1.007 1.858 1.112 1.027
φ12,2 -.900 .002 .002 .119 .005 .040 .109 .109 .208 .121 .112 1.007 1.910 1.110 1.026
θ11,1 .330 .025 .026 .032 .019 .051 .080 .081 .097 .089 .090 1.009 1.214 1.103 1.123
θ21,1 -.180 .009 .010 .008 .003 .052 .069 .070 .099 .077 .082 1.011 1.421 1.107 1.190
θ12,1 -.200 .005 .006 .053 .000 .047 .095 .096 .113 .104 .105 1.014 1.194 1.094 1.110
θ22,1 -.400 .025 .029 .103 .021 .089 .107 .109 .162 .119 .136 1.022 1.515 1.119 1.277
θ11,2 -.200 .026 .028 .000 .029 .037 .082 .084 .108 .094 .085 1.015 1.308 1.140 1.032
θ12,2 .920 .004 .006 .192 .000 .105 .136 .138 .275 .155 .161 1.013 2.013 1.133 1.179

14 µΦ,1 .000 .003 .002 .003 .002 .003 .082 .082 .082 .081 .084 1.005 1.003 .999 1.028
µΦ,2 .000 .003 .003 .003 .004 .004 .089 .089 .089 .089 .090 1.005 1.001 1.005 1.015
φ21,0 .500 .001 .001 .001 .001 .000 .021 .021 .021 .021 .023 1.003 1.005 1.002 1.057
φ11,1 1.800 .000 .001 .001 .001 .005 .024 .025 .025 .025 .025 1.017 1.027 1.027 1.038
φ21,1 -.400 .016 .018 .017 .018 .014 .062 .062 .062 .062 .067 1.011 1.004 1.010 1.079
φ22,1 .800 .028 .031 .029 .031 .029 .090 .091 .090 .091 .099 1.011 1.001 1.010 1.100
φ11,2 -.360 .007 .006 .004 .002 .033 .075 .077 .077 .078 .083 1.019 1.027 1.033 1.098
φ12,2 -.900 .015 .013 .010 .008 .056 .112 .114 .115 .116 .125 1.018 1.025 1.031 1.113
θ11,1 .330 .022 .021 .021 .020 .028 .081 .082 .082 .082 .085 1.010 1.011 1.015 1.050
θ21,1 -.180 .007 .008 .009 .008 .003 .072 .072 .074 .074 .076 .998 1.020 1.017 1.045
θ12,1 -.200 .011 .011 .012 .010 .021 .096 .098 .097 .099 .102 1.021 1.018 1.033 1.066
θ22,1 -.400 .033 .038 .037 .033 .045 .117 .121 .119 .120 .126 1.029 1.016 1.025 1.078
θ11,2 -.200 .026 .027 .028 .031 .012 .083 .084 .085 .088 .080 1.014 1.021 1.056 .966
θ12,2 .920 .020 .021 .020 .006 .063 .140 .145 .144 .147 .150 1.029 1.028 1.043 1.065

Note – TS1 and TS2 are the three-step GLS estimators based on the two-stepGLS estimator and the two-step OLS estimator, respectively. While HK, RBY and PS stand for the
fully efficient GLS estimators suggested by Hannan and Kavalieris (1984), Reinsel et al. (1992) and Poskitt and Salau (1995), respectively.These estimates are obtained with
1000 replications. The eigenvalues of the model are real .800 and a double root .900 for the autoregressive (AR) operator, and real -.530 and conjugate -.350̄+.584i (.681 in norm)
for the moving-average (MA) operator. Recall that the number of eigenvalues in each of the AR and MA operators is equal to the McMillan degree.

15



Poskitt and Salau (1995)], but instead, they usedΣ̃u(nT ) which we know isOp

(

1
)

Σu. The bias associated
with HK procedure may be attributed to using more or less well behaved filteredresiduals in finite
samples, and a weighting matrix mismatching the one iteration of the scoring algorithm(starting from the
two-step OLS estimates). In fact, they use the third-stage error covariance estimator of their procedure
instead of the one associated with a faster rate of convergence, namely theone based on the filtered
residuals necessary to their fourth-stage estimation. Although RBY procedure uses the same filtering
scheme as the HK method, it relatively delivers estimates with satisfactory finite sample properties. This
is due perhaps to using an error covariance estimator with better small-sample properties as a weighting
matrix in their GLS linear regression.

It is well known that approximating VARMA models having highly persistent MAoperators usually
requires autoregressions with many lags, and vice versa. Also, approximating nonpersistent VARMA
models with autoregressions using many lags would result in estimates with higherbias and/or MSE.
This exactly occurs with TS1 and TS2 procedures for the echelon VARMAmodel with Kronecker indices
(2, 1) since the dominant eigenvalue associated with the MA operator, namely .681 (innorm), is not
considered as persistent; see Tables 3 and 4. The same tables show that, given the sample size, increasing
the lag-ordernT reduces the large bias for HK and PS procedures, and yields parameterestimates with
MSE decreasing for the HK procedure but with a mixed tendency for the PSmethod. Further, while
noticing that RBY estimates are characterized with a slight increase in the bias,they exhibit MSE with a
mixed tendency. Besides noting that the bias generally decreases withnT with all methods for the echelon
VARMA (1, 2), we stress that the overall tendency for the MSE is not pronounced. This is due perhaps
to the fact that the largest eigenvalue associated with the MA operator, namely .824, cannot characterize
the model as less or highly persistent; see Tables 1 and 2. Simulation results show that, overall, TS1,
TS2 and RBY methods outperform those of HK and PS by far. For a better idea on which procedure
provides estimates with better sample properties – since we note that those of RBY procedure behave in
a way quite similar to ours – we compute the ratio of the MSE of each procedure’s estimates relative to
those associated with TS1. Obviously, with the exception of TS2 and PS procedures, those of RBY and
(to a large extent) HK provide estimates with MSE ratios, overall, greater than unity. Note that the cases
where the MSE ratios of PS estimates are less than unity are somehow (indirectly) attributed to relatively
substantial biases characterizing some of the echelon parameter estimates. These cases also match some
situations where the reduction in the standard deviation of the estimates outweighs the increase in the
square of the associated bias. Further, the frequency of these below-unity ratios is generally increasing
with nT and decreasing with the sample size. Finally, it is noteworthy that, while TS2 generally dominates
RBY , TS1 has a slight advantage over TS2. So, choosing either TS1 or TS2 would have no significant
effect on the small-sample behavior of the resulting echelon VARMA parameter estimates for the models
studied.

6 Conclusion

This paper proposes a new three-step linear estimation procedure for stationary invertible echelon
VARMA models. It can be extended to VARMAX or integrated and cointegrated VARMA models as
well. The estimation method focuses on the echelon form parameterization as it tends to deliver relatively
parsimonious models, but may easily adapt to other parameterizations such asthe final equations form.

Our setup provides simplified and practical echelon parameter estimates that are easier to obtain
than those of Hannan and Kavalieris (1984), Reinsel et al. (1992), and Poskitt and Salau (1995). We
extend the results of Dufour and Jouini (2005) to the two-step GLS estimatorand show its consistency
and asymptotic normality with strong innovations. Exploiting the explicit form of thesecond-stage
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regression residuals, we propose a new recursive filtering scheme based on consistent (hence better) initial
values for obtaining well-behaved pseudo-regressors necessary toour third-stage GLS (fully efficient)
estimation. These filtered residuals which approximate the implicit VARMA innovation estimates
matching the two-step linear estimator, are functions of the first-stage autoregression residuals and the
second-stage regression residuals as well. So, they take into account the truncation error associated with
the long-autoregression used in the first-stage, along with some adjustments involving the first two-step
regression residuals. Besides this novelty, our third-stage linear regression is derived by exploiting the
nonlinear structure of the VARMA innovations in the model parameters without using Taylor expansion.
As such, the resulting three-step GLS estimator, for which we establish its consistency and asymptotic
normality with strong innovations, then show its asymptotic equivalence to ML (hence efficiency)
under Gaussian innovations, provides an intuitive interpretation of nonlinear estimation methods such as
nonlinear GLS and ML. Although our three-step linear estimation procedureis asymptotically equivalent
to those by Hannan and Kavalieris (1984), Reinsel et al. (1992) and Poskitt and Salau (1995), it is
computationally much simpler relatively. In addition, the asymptotic covariance estimators we gave for
the second and third-stage echelon VARMA parameter estimators as well, aresimple and more practical
for inference, especially in the context of simulation-based techniques such as bootstrap methods or
MMC tests. Finally, by examining the complex dynamic structure of the third-stageregression residuals,
we provide an efficient estimator of the covariance matrix of the VARMA innovations, which is of order
T−1 more accurate than the one by the fourth-stage of Hannan and Kavalieris (1984).

The small-sample performance of our efficient linear estimators is studied compared to competing
ones, namely those of Hannan and Kavalieris (1984), Reinsel et al. (1992), and Poskitt and Salau
(1995). Simulation evidence shows that, in most cases, our fully efficient estimators outperform their
competitors in terms of bias and MSE for the models studied. It also stresses thesensitivity of the
small-sample properties of the echelon VARMA parameter estimates to the truncation-order of the
first-stage autoregression approximating the true innovations. This suggests that further investigation
should be made in this way for developing efficient model selection procedures to estimate accurately the
autoregression truncation-lag in finite samples. Indeed, such a truncationmay severely affect, through
the echelon VARMA parameter estimates, the finite-sample behavior of the resulting high dynamics or
smooth functions of the VARMA slope parameters and innovation variances,such as impulse responses,
error variance decomposition, predictability measures or long-term forecasts, usually subject of interest
in most applied work.

A Appendix: Proofs

PROOF OF COROLLARY 4.1 Let Φ̃ (p̄) =
[

−µ̃Φ, Φ̃0,−Φ̃1, . . . , −Φ̄p̄

]

, Φ (p̄) = [−µΦ, Φ0,−Φ1, . . . , −Φp̄] and finally

Yt (p̄) =
[

1, y′

t, y
′

t−1, . . . , y′

t−p̄

]

′

. Then, in view of (4.2), (4.3), (3.9) and using the multivariate version of Lemma2.2of Kreiss
and Franke (1992), we show, fort = −nT + 1, ..., T , that
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)

.

(A.1)
On the other hand, using (4.11), (4.12), (3.9) and Lemma2.2of Kreiss and Franke (1992), we show, fort = 1, ..., T , that

∥

∥ũt − ut (η̃)
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(A.2)

since‖ut−τ − ũt−τ (nT )‖ and‖ẽt−τ (nT ) − ut−τ‖ are bothOp

(

nT /T 1/2
)

in view of (3.4) and (3.12), respectively.
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PROOF OF PROPOSITION 4.1 By the triangular inequality,

∥

∥Σ̃u(η̃) − Σu

∥

∥ ≤
1

T

T
∑

t=1

{

∥

∥ut (η̃) − ut

∥

∥

∥

∥ut (η̃)
∥

∥ +
∥

∥ut

∥

∥

∥

∥ut (η̃) − ut

∥

∥

}

+ Op
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where
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. Using (4.15) and (4.12),
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On substitutinget−τ (nT ) and ẽt−τ (nT ) with their expressions in (3.6) and (3.11), and using (3.4), (3.9) and Lemma2.2 of
Kreiss and Franke (1992), we have:
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Hence,
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PROOF OF PROPOSITION 4.2 Note thatQ−1
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where, specifically,Q1 = T−1 ∑T
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∥

∥

∥
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∞
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∥
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and
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∥

∥
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On the other hand,
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∥
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PROOF OF THEOREM 4.1 Note that (4.21) can be rewritten asη̂ − η = Q̃X(η̃)Ω̃X(η̃) + Q̃◦
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where
∥

∥QX(η)

∥

∥

1
= Op (1),

∥

∥ΩX(η)

∥

∥ = Op

(

T−1/2
)

, while
∥

∥

∥
Q̃◦

X(η̃) − QX(η)

∥

∥

∥

1
and

∥

∥

∥
Q̃X(η̃) − Q̃◦

X(η̃)

∥

∥

∥

1
are both

Op

(

T−1/2
)

. In addition, setS1 = T−1 ∑T
t=1 ZtΣ

−1
u

[

ut (η) − ut

]

, S2 = T−1 ∑T
t=1 Zt

[

Σ̃−1
u(η̃) − Σ−1

u

]

ut (η) and

S3 = T−1 ∑T
t=1

[

Z◦

t (η̃, η) − Zt

]

Σ̃−1
u(η̃)ut (η). Then

∥

∥

∥
Ω̃•

X(η̃) − ΩX(η)

∥

∥

∥
≤

∥

∥S1

∥

∥ +
∥

∥S2

∥

∥ +
∥

∥S3

∥

∥. (A.18)

Using the fact that‖ut − ut (η)‖ = Op
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∥
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where, as in (A.19),
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∥
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]

′
[

Λν (η̃) − Λν (η)
]

′

∥

∥

∥

∥

≤

T−τ−1
∑

ν=0

∆11

∥

∥Λν (η̃) − Λν (η)
∥

∥,

∆2 =

∥

∥

∥

∥

1

T

T
∑

t=τ+1

t−τ−1
∑

ν=0

ut

[

ẽt−τ−ν (nT ) − et−τ−ν (nT )
]

′

Λν (η̃)′
∥

∥

∥

∥

≤

T−τ−1
∑

ν=0

∆22

∥

∥Λν (η̃)
∥

∥ , (A.38)

∆11 =

∥

∥

∥

∥

1

T

T
∑

t=τ+ν+1

ut

[

et−τ−ν (nT ) − ũt−τ−ν (nT )
]

′

∥

∥

∥

∥

= Op

(nT

T

)

, (A.39)

∆22 =

∥

∥

∥

∥

1

T

T
∑

t=τ+ν+1

ut [η − η̃]′ R′
[

X̃t−τ−ν (nT ) ⊗ Ik

]

∥

∥

∥

∥

= Op

(

T−1). (A.40)

Therefore, using Lemma2.2 of Kreiss and Franke (1992),∆1 = Op

(

nT /T 3/2
)

and ∆2 = Op

(

T−1
)

. It follows that,
∥

∥

∥

∥

1
T

∑T
t=τ+1 ut

[

ut−τ (η̃) − ut−τ (η)
]

′

∥

∥

∥

∥

,

∥

∥

∥

∥

1
T

∑T
t=τ+1 ut

[

Xt−τ (η̃) − Xt−τ (η)
]

′

∥

∥

∥

∥

and
∥

∥Ω23
Z(η̃)

∥

∥ are allOp

(

T−1
)

. Hence
∥

∥Ω2
Z(η̃)

∥

∥ and
∥

∥S3

∥

∥ are bothOp

(

T−1
)

. Thus,
∥

∥

∥
Ω̃•

X(η̃) − ΩX(η)

∥

∥

∥
= Op

(

T−1
)

. Likewise,

∥

∥

∥
Ω̃X(η̃) − Ω̃◦

X(η̃)

∥

∥

∥
≤

∥

∥R
∥

∥

{

∥

∥Ω1
X(η̃)

∥

∥ +
∥

∥Ω2
X(η̃)

∥

∥ +
∥

∥Ω3
X(η̃)

∥

∥ +
∥

∥Ω4
X(η̃)

∥

∥

}

, with (A.41)

Ω1
X(η̃) = R′vec

[

1

T

T
∑

t=1

t−1
∑

τ=0

[

Λτ (η̃) − Λτ (η)
]

′

Σ̃−1
u(η̃)

[

ut (η̃) − ut

][

Xt−τ (η̃) − Xt−τ

]

′

]

, (A.42)

Ω2
X(η̃) = R′vec

[

1

T

T
∑

t=1

t−1
∑

τ=0

[

Λτ (η̃) − Λτ (η)
]

′

Σ̃−1
u(η̃)

[

ut (η̃) − ut

]

Xt−τ
′

]

, (A.43)

Ω3
X(η̃) = R′vec

[

1

T

T
∑

t=1

t−1
∑

τ=0

[

Λτ (η̃) − Λτ (η)
]

′

Σ̃−1
u(η̃)ut

[

Xt−τ (η̃) − Xt−τ

]

′

]

, (A.44)

Ω4
X(η̃) = R′vec

[

1

T

T
∑

t=1

t−1
∑

τ=0

[

Λτ (η̃) − Λτ (η)
]

′

Σ̃−1
u(η̃)utXt−τ

′

]

. (A.45)

Using the same arguments as before, we see that
∥

∥Ω1
X(η̃)

∥

∥ = Op

(

T−3/2
)

, while
∥

∥Ω2
X(η̃)

∥

∥,
∥

∥Ω3
X(η̃)

∥

∥ and
∥

∥Ω4
X(η̃)

∥

∥ are all

Op

(

T−1
)

. Thus,
∥

∥

∥
Ω̃X(η̃) − Ω̃◦

X(η̃)

∥

∥

∥
= Op

(

T−1
)

. Similarly, we show that
∥

∥

∥
Ω̃◦

X(η̃) −ΩX(η)

∥

∥

∥
= Op

(

T−1
)

. Further, using the
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fact that
∥

∥

∥
Ω̃X(η̃)

∥

∥

∥
≤

∥

∥

∥
Ω̃◦

X(η̃)

∥

∥

∥
+

∥

∥

∥
Ω̃X(η̃) − Ω̃◦

X(η̃)

∥

∥

∥
≤

∥

∥

∥
ΩX(η)

∥

∥

∥
+

∥

∥

∥
Ω̃◦

X(η̃) − ΩX(η)

∥

∥

∥
+

∥

∥

∥
Ω̃X(η̃) − Ω̃◦

X(η̃)

∥

∥

∥
, (A.46)

we conclude that
∥

∥

∥
Ω̃X(η̃)

∥

∥

∥
= Op

(

T−1/2
)

. Finally,
∥

∥η̂ − η
∥

∥ = Op

(

T−1/2
)

.

PROOF OF THEOREM 4.2 Let the random vectors̃SX(η̃) = T 1/2
{

Q̃X(η̃)Ω̃X(η̃) + Q̃◦

X(η̃)

[

Ω̃•

X(η̃) − Ω̃◦

X(η̃)

]

}

and

SX(η) = T 1/2QX(η)ΩX(η). Then,

∥

∥

∥
S̃X(η̃) − SX(η)

∥

∥

∥
≤ T 1/2

{

∥

∥

∥
Q̃◦

X(η̃) − QX(η)

∥

∥

∥

1

∥

∥

∥
Ω̃•

X(η̃)

∥

∥

∥
+

∥

∥QX(η)

∥

∥

1

∥

∥

∥
Ω̃•

X(η̃) − ΩX(η)

∥

∥

∥

+
∥

∥

∥
Q̃X(η̃) − Q̃◦

X(η̃)

∥

∥

∥

1

∥

∥

∥
Ω̃X(η̃)

∥

∥

∥
+

∥

∥

∥
Q̃◦

X(η̃)

∥

∥

∥

1

∥

∥

∥
Ω̃X(η̃) − Ω̃◦

X(η̃)

∥

∥

∥

}

. (A.47)

Using Proposition4.2and Theorem4.1, we show that
∥

∥

∥
S̃X(η̃)−SX(η)

∥

∥

∥
= Op

(

T−1/2
)

. Therefore, by the central limit theorem

for stationary processes [see Anderson (1971, Section 7.7), Scott(1973, Theorem 2) and Chung (2001, Theorem 9.1.5)] and the

assumption of independence betweenut andZt, we haveT 1/2ΩX(η)
d

−→
T→∞

N
[

0, Q−1
X(η)

]

. Hence,

T 1/2(η̂ − η
)

= S̃X(η̃)
d

−→
T→∞

N
[

0, QX(η)

]

. (A.48)

PROOF OF PROPOSITION 4.3 Note that (4.25) reduces to

ut (η̂) = ut (η̃) + Z◦

t (η̃, η̂)′
(

η̃ − η̂
)

, (A.49)

sinceǫt (η̃, η̂) = ωt (η̃)−Zt (η̃)′ η̂ andωt (η̃) = ut (η̃)+Zt (η̃)′ η̃. Therefore, using Lemma2.2of Kreiss and Franke (1992),
Proposition4.1, (3.9) and Theorem4.1, we get:

∥

∥ut (η̂) − ut

∥

∥ =
∥

∥ut (η̃) − ut

∥

∥ +
∥

∥Z◦

t (η̃, η̂)
∥

∥

{

∥

∥η̃ − η
∥

∥ +
∥

∥η̂ − η
∥

∥

}

= Op

(

T−1/2) + Op

(

ρt nT

T 1/2

)

, (A.50)

for t = p̄ + 1, ..., T . Then as in Proposition4.1, we show that
∥

∥Σ̃u(η̂) − Σu

∥

∥ = Op

(

T−1/2
)

.
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References

Anderson, T. W. (1971),The Statistical Analysis of Time Series, John Wiley & Sons, New York.

Athanasopoulos, G. and Vahid, F. (2008), ‘VARMA versus VAR for macroeconomic forecasting’,Journal
of Business & Economic Statistics26, 237–252.

Chung, K. L. (2001),A Course in Probability Theory, third edn, Academic Press, New York.

22



Deistler, M. and Hannan, E. J. (1981), ‘Some properties of the parameterization of ARMA systems with
unknown order’,Journal of Multivariate Analysis11, 474–484.

Dhrymes, P. J. (1998),Time Series, Unit Roots, and Cointegration, Academic Press, San Diego,
California, USA.

Dufour, J.-M. (2006), ‘Monte Carlo tests with nuisance parameters: A general approach to finite-sample
inference and nonstandard asymptotics in econometrics’,Journal of Econometrics133(2), 443–477.

Dufour, J.-M. and Jouini, T. (2005), Asymptotic distribution of a simple linearestimator for VARMA
models in echelon form,in P. Duchesne and B. Rémillard, eds, ‘Statistical Modeling and Analysis
for Complex Data Problems’, Kluwer/Springer-Verlag, Canada, chapter11, pp. 209–240.

Dufour, J.-M. and Jouini, T. (2006), ‘Finite-sample simulation-based testsin VAR models with
applications to Granger causality testing’,Journal of Econometrics135(1-2), 229–254.

Dufour, J.-M. and Jouini, T. (2010), Asymptotic distributions for some quasi-efficient estimators in
echelon-form VARMA models, Discussion paper, Department of Economics, McGill University.

Gallego, J. L. (2009), ‘The exact likelihood function of a vector autoregressive moving average process’,
Statistics and Probability Letters79(6), 711–714.

Hamilton, J. D. (1994),Time Series Analysis, Princeton University Press, Princeton, New Jersey.

Hannan, E. J. (1969a), ‘The estimation of mixed moving average autoregressive systems’,Biometrika
56(3), 579–593.

Hannan, E. J. (1969b), ‘The identification of vector mixed autoregressive-moving average systems’,
Biometrika57, 223–225.

Hannan, E. J. (1970),Multiple Time Series, John Wiley & Sons, New York.

Hannan, E. J. (1976), ‘The identification and parameterization of ARMAXand state space forms’,
Econometrica44(4), 713–723.

Hannan, E. J. (1979), The statistical theory of linear systems,in P. R. Krishnaiah, ed., ‘Developments in
Statistics’, Vol. 2, Academic Press, New York, pp. 83–121.

Hannan, E. J. and Deistler, M. (1988),The Statistical Theory of Linear Systems, John Wiley & Sons, New
York.

Hannan, E. J. and Kavalieris, L. (1984), ‘Multivariate linear time series models’, Advances in Applied
Probability16, 492–561.

Hannan, E. J. and Kavalieris, L. (1986), ‘Regression, autoregression models’,Journal of Time Series
Analysis7(1), 27–49.

Hannan, E. J., Kavalieris, L. and Mackisack, M. (1986), ‘Recursive estimation of linear systems’,
Biometrika73(1), 119–133.

Hannan, E. J. and Rissanen, J. (1982), ‘Recursive estimation of mixedautoregressive-moving average
order’,Biometrika69(1), 81–94. Errata 70 (1983), 303.

23



Hillmer, S. C. and Tiao, G. C. (1979), ‘Likelihood function of stationary multipleautoregressive moving
average models’,Journal of the American Statistical Association74(367), 652–660.

Kascha, C. (2007), A comparison of estimation methods for vector autoregressive moving-average
models, EUI Working PaperECO 12, European University institute, Department of Economics,
Via Della Piazzuola 43, 50133 Firenze, Italy.

Koreisha, S. G. and Pukkila, T. M. (1990), ‘A generalized least-squares approach for estimation of
autoregressive-moving-average models’,Journal of Time Series Analysis11(2), 139–151.

Kreiss, J.-P. and Franke, J. (1992), ‘Bootstrapping stationary autoregressive moving-average models’,
Journal of Time Series Analysis13(4), 297–317.

Lütkepohl, H. (1987),Forecasting Aggregated Vector ARMA Processes, Springer-Verlag, Berlin.

Lütkepohl, H. (2001), Vector autoregressions,in B. Baltagi, ed., ‘Companion to Theoretical
Econometrics’, Blackwell Companions to Contemporary Economics, Basil Blackwell, Oxford,
U.K., chapter 32, pp. 678–699.

Lütkepohl, H. (2005),New Introduction to Multiple Time Series Analysis, Springer, Springer-Verlag,
Berlin Heidelberg, Germany.

Lütkepohl, H. (2006), Forecasting with VARMA models,in G. Elliott, C. W. J. Granger and
A. Timmermann, eds, ‘Handbook of Economic Forecasting’, Vol. 1, Elsevier, Netherland, chapter 6,
pp. 287–325.

Maravall, A. (1993), ‘Stochastic linear trends: Models and estimators’,Journal of Econometrics56, 5–37.

Mauricio, J. A. (2002), ‘An algorithm for the exact likelihood of a stationary vector
autoregressive-moving average model’,Journal of Time Series Analysis23(4), 473–486.

Mauricio, J. A. (2006), ‘Exact maximum likelihood estimation of partially nonstationary vector ARMA
models’,Computational Statistics & Data Analysis50(12), 3644–3662.

Metaxoglou, K. and Smith, A. (2007), ‘Maximum likelihood estimation of VARMA models using a
state-space EM algorithm’,Journal of Time Series Analysis28(5), 666–685.

Poskitt, D. S. and Salau, M. O. (1995), ‘On the relationship between generalized least squares and
gaussian estimation of vector ARMA models’,Journal of Time Series Analysis16(6), 617–645.

Reinsel, G. C. (1997),Elements of Multivariate Time Series Analysis, second edn, Springer-Verlag, New
York.

Reinsel, G. C., Basu, S. and Yap, S. F. (1992), ‘Maximum likelihood estimators in the multivariate
autoregressive moving-average model from a generalized least squares viewpoint’,Journal of Time
Series Analysis13(2), 133–145.

Scott, D. J. (1973), ‘Central limit theorems for martingales and for processes with stationary increments
using a Skorokhod representation approach’,Advances in Applied Probability5, 119–137.

Tiao, G. C. and Box, G. E. P. (1981), ‘Modeling multiple time series with applications’, Journal of the
American Statistical Association76(376), 802–816.

24


